Bài 1 trang 75 SGK Đại số và Giải tích 12 Nâng cao

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

a) Với số thực a và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m.n}};{{{a^m}} \over {{a^n}}} = {a^{m - n}}\)

b) Với hai số thực a, b cùng khác 0 và số nguyên n, ta có:
\({\left( {ab} \right)^n} = {a^n}.{b^n};{\left( {{a \over b}} \right)^n} = {{{a^n}} \over {{b^n}}}\)

c) Với hai số thực a, b thỏa mãn 0 < a < b với số nguyên a, ta có an < bn

d) Với số thực a khác 0 và hai số nguyên m, n, ta có: Nếu m>n thì \({a^m} > {a^n}\).

Lời giải chi tiết

a) Sai. Sửa lại:

Với số thực a khác 0 và các số nguyên m, n, ta có:
\({a^m}.{a^n} = {a^{m+n}};{{{a^m}} \over {{a^n}}} = {a^{m - n}}\)

b) Đúng.

c) Sai (chẳng hạn \(a^0=b^0\))

d) Sai. Chẳng hạn 3 > 2 nhưng \({\left( {{1 \over 2}} \right)^3} < {\left( {{1 \over 2}} \right)^2}\).

Loigiaihay.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close