Bài 17 trang 22 SGK Đại số và Giải tích 12 Nâng cao

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:

LG a

\(f\left( x \right) = {x^2} + 2x - 5\) trên đoạn \(\left[ { - 2;3} \right]\);

Lời giải chi tiết:

\(D = \left[ { - 2;3} \right]\)

\(f'\left( x \right) = 2x + 2\)

\(f'\left( x \right) = 0 \Leftrightarrow  x=- 1 \in \left[ { - 2;3} \right]\)

Ta có: \(f\left( { - 2} \right) =  - 5;f\left( { - 1} \right) =  - 6;\) \(f\left( 3 \right) = 10\).

Vậy: \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 2;3} \right]}  =  - 6;\mathop {\max \,f\left( x \right) = 10}\limits_{x \in \left[ { - 2;3} \right]} \).

Cách khác:

Hàm số f(x)= x2 + 2x – 5

Tập xác định D = R.

Đạo hàm y’= 2x +2 = 0 x = - 1

Bảng biến thiên:

Vậy: \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 2;3} \right]}  =  - 6;\mathop {\max \,f\left( x \right) = 10}\limits_{x \in \left[ { - 2;3} \right]} \).

LG b

\(f\left( x \right) = {{{x^3}} \over 3} + 2{x^2} + 3x - 4\) trên đoạn \(\left[ { - 4;0} \right]\);

Lời giải chi tiết:

\(D = \left[ { - 4;0} \right]\)

\(f'\left( x \right) = {x^2} + 4x + 3\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \in \left[ { - 4;0} \right] \hfill \cr 
x = - 3 \in \left[ { - 4;0} \right] \hfill \cr} \right.\)

Ta có: \(f\left( { - 4} \right) =  - {{16} \over 3};f\left( { - 1} \right) =  - {{16} \over 3};\) \(f\left( { - 3} \right) =  - 4;f\left( 0 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - {{16} \over 3};\) \(\mathop {\max \,f\left( x \right)}\limits_{x \in \left[ { - 4;0} \right]}  =  - 4\).

LG c

\(f\left( x \right) = x + {1 \over x}\) trên đoạn \(\left( {0; + \infty } \right)\);

Lời giải chi tiết:

\(D = \left( {0; + \infty } \right)\)

\(f'\left( x \right) = 1 - {1 \over {{x^2}}} = {{{x^2} - 1} \over {{x^2}}}\) với mọi \(x \ne 0\)

\(f'\left( x \right) = 0 \Leftrightarrow x =  \pm 1\)

\(x=1\in \left( {0; + \infty } \right.)\)

\(x=-1\not\in \left( {0; + \infty } \right.)\)

Vậy \(\mathop {\min \,\,f\left( x \right) = f\left( 1 \right)}\limits_{x \in \left( {0; + \infty } \right)}  = 2\).

Hàm số không đạt giá trị lớn nhất trên khoảng \(\left( {0; + \infty } \right)\).

LG d

\(f\left( x \right) =  - {x^2} + 2x + 4\) trên đoạn \(\left[ {2;4} \right]\);

Lời giải chi tiết:

\(D = \left[ {2;4} \right]\)

\(f'\left( x \right) =  - 2x + 2\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 1 \notin \left[ {2;4} \right]\)

Ta có: \(f\left( 2 \right) = 4;f\left( 4 \right) =  - 4\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  =  - 4;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {2;4} \right]}  = 4\).

LG e

\(f\left( x \right) = {{2{x^2} + 5x + 4} \over {x + 2}}\) trên đoạn \(\left[ {0;1} \right]\);

Lời giải chi tiết:

\(D = \left[ {0;1} \right]\)

\(f'\left( x \right) = {{2{x^2} + 8x + 6} \over {{{\left( {x + 2} \right)}^2}}}\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \matrix{
x = - 1 \notin \left[ {0;1} \right] \hfill \cr 
x = - 3 \notin \left[ {0;1} \right] \hfill \cr} \right.\)

Ta có: \(f\left( 0 \right) = 2;f\left( 1 \right) = {{11} \over 3}\)

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = 2;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = {{11} \over 3}\)

Cách khác:

Bảng biến thiên:

Vậy \(\mathop {\min \,f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = 2;\) \(\mathop {\max f\left( x \right)}\limits_{x \in \left[ {0;1} \right]}  = {{11} \over 3}\)

LG f

\(f\left( x \right) = x - {1 \over x}\) trên đoạn \(\left( {0;2} \right]\);

Lời giải chi tiết:

\(D = \left( {0;2} \right]\)

\(f'\left( x \right) = 1 + {1 \over {{x^2}}} > 0\) với mọi \(x \in \left( {0;2} \right]\)

\(f\left( 2 \right) = {3 \over 2}\)

Vậy \(\mathop {\,\max f\left( x \right)}\limits_{x \in \left[ {0;2} \right]}  = {3 \over 2}\) .

Hàm số không đạt giá trị nhỏ nhất trên \(\left( {0;2} \right]\).

Loigiaihay.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close