Nếu một tam giác có một đường trung tuyến đồng thời là đường trung trực thì tam giác đó là tam giác gì?
Tam giác vuông
Tam giác cân
Tam giác đều
Tam giác vuông cân
Áp dụng tính chất đường trung trực và đường trung tuyến của tam giác.
Giả sử \(\Delta ABC\) có $AM$ là trung tuyến đồng thời là đường trung trực.
Ta sẽ chứng minh \(\Delta ABC\) là tam giác cân.
Thật vậy, vì $AM$ là trung tuyến của \(\Delta ABC\) (gt) \( \Rightarrow BM = MC\) (tính chất trung tuyến)
Vì $AM$ là trung trực của $BC$ $ \Rightarrow AM \bot BC$
Xét hai tam giác vuông \({\Delta}ABM\) và \({\Delta}ACM\) có:
\(BM = CM\left( {cmt} \right)\)
$AM$ chung
\( \Rightarrow \Delta ABM = \Delta ACM\) (2 cạnh góc vuông)
\( \Rightarrow AB = AC\) (2 cạnh tương ứng) \( \Rightarrow \Delta ABC\) cân tại $A.$
Đáp án : B
Các bài tập cùng chuyên đề