Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\), N, \(P\) lần lượt là trung điểm thuộc các cạnh \(AB\), AC, \(BC\) và \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\).Tứ giác \(AMPN\) là hình gì?
Xét tam giác ABC ta có: \(MP = \frac{{AC}}{2}\), \(MP\;{\rm{//}}\;AN\)
Mà \(AN = \frac{{AC}}{2}\) \( \Rightarrow MP\;{\rm{ = }}\;AN\)
\( \Rightarrow \) Tứ giác \(AMPN\) là hình bình hành
Mà \(\widehat A = {90^o}\)\( \Rightarrow AMPN\) là hình chữ nhật.
Đáp án : C
Các bài tập cùng chuyên đề