Tìm bậc của đa thức \(N\) trong luyện tập 2.
Để tìm được bậc của đa thức:
Đầu tiên ta phải rút gọn đa thức. trong dạng thu gọn xác định được hạng tử có bậc cao nhất. Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.
Rút gọn đa thức N:
\(\begin{array}{l}N = 8{x^2}{y^2} - xyz - 2{x^2}{y^2} + 7xyz - 6{x^2}{y^2} + 3{x^2} + 4x - 6{x^2} + 5x + 9\\ = \left( {8{x^2}{y^2} - 2{x^2}{y^2} - 6{x^2}{y^2}} \right) + \left( { - xyz + 7xyz} \right) + \left( {3{x^2} - 6{x^2}} \right) + \left( {4x + 5x} \right) + 9\\ = - 3{x^2} + 9x + 6xyz + 9\end{array}\)
Dạng thu gọn của đa thức \(N\) là đa thức \(- 3{x^2} + 9x + 6xyz + 9\).
Trong dạng thu gọn trên, hạng tử \( - 3{x^2}\) có bậc cao nhất và bậc này là 2. Vậy bậc của đa thức \(N\) là 2.
Các bài tập cùng chuyên đề
Bài 1 :
Bậc của đa thức \({x^5} - 2{x^2}y - 2x + 9 - {x^5} - y\) là:
\(5\)
\(2\)
\(3\)
\(9\)
Bài 2 :
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
Bài 3 :
Giá trị của đa thức \({x^3} - 6{{x}}y + 7{{x}}yz\) tại x= -1; y = 1; z = -1 là:
Bài 4 :
Hệ số cao nhất của đa thức: \(P(x) = 4{{{x}}^2}y + 6{{{x}}^3}{y^2} - 10{{{x}}^2}y + 4{{{x}}^3}{y^2}\)là
Bài 5 :
Đa thức nêu trong tình huống mở đầu có phải đa thức thu gọn không?
Bài 6 :
Cho đa thức \(N = 5{y^2}{z^2} - 2x{y^2}z + \dfrac{1}{3}{x^4} - 2{y^2}{z^2} + \dfrac{2}{3}{x^4} + x{y^2}z\).
a) Thu gọn đa thức N.
b) Xác định hệ số và bậc của từng hạng tử (tức là bậc của từng đơn thức) trong dạng thu gọn của N.
Bài 7 :
Với mỗi đa thức sau, thu gọn (nếu cần) và tìm bậc của nó.
a) \(Q = 5{x^2} - 7xy + 2,5{y^2} + 2x - 8,3y + 1;\)
b) \(H = 4{x^5} - \dfrac{1}{2}{x^3}y + \dfrac{3}{4}{x^2}{y^2} - 4{x^5} + 2{y^2} - 7.\)
Bài 8 :
Bạn Trang nêu vấn đề: Một đa thức bậc hai thu gọn với hai biến (x và y) mà mỗi hạng tử của nó đều có hệ số bằng 1 thì có nhiều nhất là mấy hạng tử? Có ba bạn trả lời như sau:
Anh: Có 3 hạng tử
Bình: Có 5 hạng tử
Chung: Có 6 hạng tử
Em hãy nêu ý kiến của mình và cho biết đó là đa thức nào.
Bài 9 :
Thu gọn đa thức:
a) \(5{x^4} - 2{x^3}y + 20x{y^3} + 6{x^3}y - 3{x^2}{y^2} + x{y^3} - {y^4}\)
b) \(0,6{x^3} + {x^2}z - 2,7x{y^2} + 0,4{x^3} + 1,7x{y^2}\)
Bài 10 :
Thu gọn (nếu cần) và tìm bậc của mỗi đa thức sau:
a) \({x^4} - 3{x^2}{y^2} + 3x{y^2} - {x^4} + 1\)
b) \(5{x^2}y + 8xy - 2{x^2} - 5{x^2}y + {x^2}\)
Bài 11 :
Thu gọn rồi tính giá trị của đa thức:
\(M = \dfrac{1}{3}{x^2}y + x{y^2} - xy + \dfrac{1}{2}x{y^2} - 5xy - \dfrac{1}{3}{x^2}y\) tại x=0,5 và y=1.
Bài 12 :
Cho đa thức \(P = 8{x^2}{y^2}z - 2xyz + 5{y^2}z - 5{x^2}{y^2}z + {x^2}{y^2} - 3{x^2}{y^2}z.\)
a) Thu gọn và tìm bậc của đa thức P;
b) Tính giá trị của đa thức P tại x=-4;y=2 và z=1.
Bài 13 :
Trong một khách sạn có hai bể bơi dạng hình hộp chữ nhật. Bể thứ nhất có chiều sâu là 1,2 m, đáy là hình chữ nhật có chiều dài x mét, chiều rộng y mét. Bể thứ hai có chiều sâu là 1,5 m, hai kích thước đáy gấp 5 lần hai kích thước đáy của bể thứ nhất.
a) Hãy tìm đơn thức (hai biến x và y) biểu thị số mét khối nước cần có để bơm đầy cả hai bể bơi.
b) Tính lượng nước bơm đầy hai bể nếu x=5 m, y=3 m.
Bài 14 :
Tìm bậc của mỗi đa thức sau rồi tính giá trị của chúng tại x = 1; y = -2.
\(\begin{array}{l}P = 5{x^4} - 3{x^3}y + 2x{y^3} - {x^3}y + 2{y^4} - 7{x^2}{y^2} - 2x{y^3};\\Q = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {x^3}.\end{array}\)
Bài 15 :
Từ một miếng bìa, người ta cắt ra hai hình tròn có bán kính x centimet và y centimet. Tìm biểu thức biểu thị diện tích phần còn lại của miếng bìa, nếu biết miếng bìa có hình dạng gồm hai hình vuông ghép lại và có kích thước (centimet) như Hình 1.2. Biểu thức đó có phải là một đa thức không? Nếu phải thì đó là đa thức bậc mấy?
Bài 16 :
Một đa thức hai biến bậc hai thu gọn có thể có nhiều nhất
a) Bao nhiêu hạng tử bậc hai? Cho ví dụ.
b) Bao nhiêu hạng tử bậc nhất? Cho ví dụ.
c) Bao nhiêu hạng tử khác 0? Cho ví dụ.
Bài 17 :
Thu gọn và tìm bậc của mỗi đa thức sau:
a) \(A = x - 2y + xy - 3x + {y^2}\)
b) \(B = xyz - {x^2}y + xz - \dfrac{1}{2}xyz + \dfrac{1}{2}xz\)
Bài 18 :
Tính giá trị của đa thức \(A = 3{x^2}y - 5xy - 2{x^2}y - 3xy\) tại \(x = 3\); \(y = - \dfrac{1}{2}\).
Bài 19 :
Thu gọn và tìm bậc của mỗi đa thức sau:
a) \(M = x - 3 - 4y + 2x - y\)
b) \(N = - {x^2}t + 13{t^3} + x{t^2} + 5{t^3} - 4\)
Bài 20 :
Tính giá trị của đa thức \(P = 3x{y^2} - 6xy + 8xz + x{y^2} - 10xz\) tại \(x = - 3\); \(y = - \dfrac{1}{2}\); \(z = 3\).
Bài 21 :
Cho đa thức: \(P = {x^3} + 2{{\rm{x}}^2}y + {x^2}y + 3{\rm{x}}{y^2} + {y^3}\)
Thực hiện phép cộng các đơn thức đồng dạng sao cho đa thức P không còn hai đơn thức nào đồng dạng.
Bài 22 :
Thu gọn đa thức: \(R = {x^3} - 2{{\rm{x}}^2}y - {x^2}y + 3{\rm{x}}{y^2} - {y^3}\)
Bài 23 :
Thu gọn mỗi đa thức sau:
a) \(A = 13{{\rm{x}}^2}y + 4 + 8{\rm{x}}y - 6{{\rm{x}}^2}y - 9\)
b) \(B = 4,4{{\rm{x}}^2}y - 40,6{\rm{x}}{y^2} + 3,6{\rm{x}}{y^2} - 1,4{{\rm{x}}^2}y - 26\)
Bài 24 :
Cho đa thức \(M = 2x{y^2} - 6xy + {y^2} + x{y^2} + 3xy + 4\)
a) Áp dụng tính chất giao hoán và kết hợp, hãy sắp xếp các đơn thức đồng dạng trong đa thức \(M\) về cùng một nhóm.
b) Viết đa thức \(M\) về dạng không còn hai hạng tử nào đồng dạng bằng cách cộng các đơn thức đồng dạng trong mỗi nhóm nêu trên.
Bài 25 :
Thu gọn đa thức sau:
\(N = 8{x^2}{y^2} - xyz - 2{x^2}{y^2} + 7xyz - 6{x^2}{y^2} + 3{x^2} + 4x - 6{x^2} + 5x + 9\)
Bài 26 :
Thu gọn rồi tính giá trị của đa thức sau tại \(x = \frac{1}{2},y = - 2\) và \(z = 1\):
\(D = {x^2} + {y^2} + {z^2} - {x^2} + {y^2} + {z^2} + {x^2} - {y^2} + {z^{2.}}\)
Bài 27 :
Cho đa thức \(P = {x^3}{y^4} - 4{x^2}{y^2} + 2{x^3}{y^4} + 5{x^2}{y^2} - 3{x^3}{y^4} + z - 1 - 4x + 6\)
a) Thu gọn đa thức \(P\).
b) Tính giá trị của đa thức \(P\) tại \(x = - 1\) và \(y = 2\)
Bài 28 :
Trong lĩnh vực khí tượng học, người ta sử dụng chỉ số nhiệt để mô tả mức độ nóng của không khí ngoài trời (chỉ số nhiệt càng lớn thì không khí càng nóng).
Để tính chỉ số nhiệt, các nhà khí tượng học sử dụng đa thức sau:
\(I = - 42 + 2x + 10y - 0,2xy - 0,007{x^2} - 0,05{y^2} + 0,001{x^2}y - 0,000002{x^2}{y^2},\)
Trong đó \(I\) là chỉ số nhiệt, \(x\) là độ ẩm \(\left( \% \right)\) và \(y\) là nhiệt độ \(\left( {^\circ F} \right)\) của không khí.
Tại một thời điểm, thành phố A có độ ẩm là 40% và nhiệt độ của không khí là \(100^\circ F\), còn thành phố B có độ ẩm là 50% và nhiệt độ của không khí là \(90^\circ F\). Tính chỉ số nhiệt của mỗi thành phố và cho biết không khí ở thành phố nào nóng hơn tại thời điểm đó.
Bài 29 :
Cho đa thức \(P = 5{x^4}{y^4} + 4{x^3}{y^2} + 2{x^3}{y^3} - 5{x^3}{y^2} - 4{x^4}{y^4} + 2y - 1 - 7y + 8\)
a) Thu gọn đa thức P
b) Tính giá trị của đa thức P tại \(x = 1\) và \(y = - 2\)
Bài 30 :
Ông Hùng dùng P (triệu đồng) để đầu tư. Ông đầu tư \(x\) (triệu đồng) vào một tài khoản ngân hàng với lãi suất 5,5% mỗi năm và đầu tư số tiền còn lại vào một quỹ tài chính với lãi suất 9% mỗi năm.
a) Viết một đa thức biểu diễn tổng số tiền ông Hùng thu được sau một năm đầu tư.
b) Tính giá trị của đa thức trong câu a tại \(P = 100,x = 25\) và cho biết ý nghĩa của nó.