Giải bài 9 trang 81 SGK Hình học 12

Tính khoảng cách từ điểm A(2 ; 4 ; -3) lần lượt đến các mặt phẳng.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính khoảng cách từ điểm \(A(2 ; 4 ; -3)\) lần lượt đến các mặt phẳng sau:

LG a

a) \(2x - y + 2z - 9 = 0\) ;

Phương pháp giải:

Cho điểm \(M(x_0;y_0;z_0)\) và mặt phẳng \((P): \, ax+by+cz+d=0.\) Khi đó khoảng cách từ điểm \(M\) đến mặt phẳng \((P)\) được tính bởi công thức: \(d\left( {M;\left( P \right)} \right) = \dfrac{{\left| {a{x_0} + b{y_0} + c{z_0} + d} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}.\)

Lời giải chi tiết:

\((P): \, 2x - y + 2z - 9 = 0\)

\(d(A,(P))=\dfrac{|2.2-4+2.(-3)-9)}{\sqrt{2^2+1^2+2^2}}\) \(=\dfrac{15}{3}=5\)

LG b

b) \(12x - 5z + 5 = 0\) ;

Lời giải chi tiết:

\( (Q): \, 12x - 5z + 5 = 0\)

\(d(A,(Q))=\dfrac{|12.2-5.(-3)+5)}{\sqrt{12^2+5^2}}\) \(=\dfrac{44}{13}.\)

LG c

c) \(x = 0\).

Lời giải chi tiết:

\( (R):x = 0\)

\(d\left( {A,\left( R \right)} \right) = \dfrac{{\left| 2 \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = 2\)

Loigiaihay.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close