Cho a là số thực âm. a) ( - sqrt {{a^2}} = a) b) (sqrt {{{left( {10a} right)}^2}} = 10a) c) (sqrt {4{a^2}} = - 4a) d) (sqrt {frac{{{a^2}}}{{16}}} = - frac{a}{4})
Xem chi tiếtMột bức tường có dạng hình thang ABCD vuông tại B và C, AB = (sqrt 8 ) m, BC = (sqrt {24} ) m, CD = (sqrt {18} ) m như Hình 2. a) Chiều dài của cạnh AB là (2sqrt 2 ) m. b) Chênh lệch chiều dài giữa hai cạnh AB và CD là (sqrt {10} ) m. c) Diện tích của bức tường là (10sqrt 6 ) m2. d) Chiều dài cạnh AD là (sqrt {26} )m.
Xem chi tiếtBiết rằng diện tích của hình tròn lớn bằng tổng diện tích của hai hình tròn nhỏ có bán kính lần lượt là 2 cm và 3 cm. Tính bán kính r của hình tròn lớn (kết quả làm tròn đến hàng phần mười của xăngtimet).
Xem chi tiếta) Sắp xếp ba số (2sqrt 7 ,3sqrt 7 ) và 7 theo thứ tự tăng dần. b) Rút gọn biểu thức (A = sqrt {{{left( {7 - 2sqrt 7 } right)}^2} + {{left( {7 - 3sqrt 7 } right)}^2}} ).
Xem chi tiếtTìm số tự nhiên n thoả mãn n < (sqrt {37} ) < n + 1.
Xem chi tiếtGiá trị trung bình của ba số a, b và c được tính bằng công thức (A = sqrt[3]{{abc}}). Tính giá trị trung bình nhân của các số a) 3; 8 và 9; b) -1; 40 và 25.
Xem chi tiếtCho tam giác ABC vuông tại A, (AB = sqrt 2 ,AC = sqrt 6 ). Tính giá trị đúng (không làm trò) của a) Chu vi và diện tích tam giác ABC. b) Độ dài đường cao AH của tam giác ABC.
Xem chi tiếtTính giá trị của các biểu thức: a) (sqrt {9 + sqrt {17} } .sqrt {9 - sqrt {17} } ); b) ({left( {sqrt {5 + sqrt {21} } + sqrt {5 - sqrt {21} } } right)^2}).
Xem chi tiếtRút gọn các biểu thức (biết a> 0, b > 0): a) (sqrt {frac{a}{b}} + sqrt {frac{b}{a}} - frac{{sqrt {ab} }}{a}); b) (left( {a - 2sqrt {frac{b}{a}} } right)left( {a + frac{2}{a}sqrt {ab} } right)).
Xem chi tiếta) Chứng minh rằng (frac{1}{{sqrt {n + 1} + sqrt n }} = sqrt {n + 1} - sqrt n ) với mọi số tự nhiên n. b) Tính (frac{1}{{sqrt 1 + sqrt 2 }} + frac{1}{{sqrt 2 + sqrt 3 }} + ... + frac{1}{{sqrt {99} + sqrt {100} }}.)
Xem chi tiết