Trong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x − 3)2 + (y − 4)2 = 25. Tiếp tuyến tại điểm M(0; 8) thuộc đường tròn có một vectơ pháp tuyến là:
Xem chi tiếtCho ∆1: x − 2y + 3 = 0 và ∆2: -2x – y + 5 = 0. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
Xem chi tiếtCho đường thẳng \(\Delta :\left\{ \begin{array}{l}x = - 2 + 2t\\y = 3 - 5t\end{array} \right.\). Phương trình nào dưới đây là phương trình tổng quát của ∆?
Xem chi tiếtCho hai điểm M(− 2 ; 4) và N(1 ; 2). Khoảng cách giữa hai điểm M và N là:
Xem chi tiếtTrong mặt phẳng toạ độ Oxy, cho \(\overrightarrow u = ( - 2; - 4),\overrightarrow v = (2x - y;y)\). Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) bằng nhau nếu:
Xem chi tiếtKhoảng cách từ điểm M(4 ; –2) đến đường thẳng ∆: x − 2y + 2 = 0 bằng:
Xem chi tiếtPhương trình nào sau đây là phương trình chính tắc của hypebol?
Xem chi tiếtTrong mặt phẳng toạ độ Oxy, cho đường tròn (C): (x – 6)2 + (y – 7)2 = 16. Hai điểm M, N chuyển động trên đường tròn (C). Khoảng cách lớn nhất giữa hai điểm M và N bằng:
Xem chi tiếtCho \({\Delta _1}:\left\{ \begin{array}{l}x = - 2 + \sqrt 3 t\\y = 1 - t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 t'\\y = 2 + t'\end{array} \right.\). Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
Xem chi tiếtCho tam giác ABC, biết toạ độ trung điểm các cạnh BC, CA, AB lần lượt là M(-1 ; 1), N(3 ; 4), P(5 ; 6).
Xem chi tiết