Bài 1. Định lí Thalès trong tam giác
Bài 2. Ứng dụng của định lí Thalès trong tam giác
Bài 3. Đường trung bình của tam giác
Bài 4. Tính chất đường phân giác của tam giác
Bài 5. Tam giác đồng dạng
Bài 6. Trường hợp đồng dạng thứ nhất của tam giác
Bài 7. Trường hợp đồng dạng thứ hai của tam giác
Bài 8. Trường hợp đồng dạng thứ ba của tam giác
Bài 9. Hình đồng dạng
Bài tập cuối chương VIII \(\Delta ABC\backsim \Delta DEF\) theo tỉ số đồng dạng \(k\), \(\Delta MNP\backsim \Delta DEF\) theo tỉ số đồng dạng \(q\).
Xem lời giảiAn có một mảnh bìa có dạng hình tam giác \(ABC\) nhưng bị rách. An muốn cắt bỏ phần bị rách với vết cắt là đoạn thẳng \(MN\).
Xem lời giảiĐể đo khoảng cách \(AB\), trong đó điểm \(B\) không tới được, người ta tiến hành đo bằng cách lấy các điểm \(C,D,E\) sao cho \(AD=10\)m
Xem lời giảiCho tam giác \(ABC\) có ba góc nhọn, đường cao \(AH\). Trên \(AH,AB,AC\) lần lượt lấy các điểm \(D,E,F\) sao cho \(\widehat {EDC} = \widehat {FDB} = 90^\circ \). Chứng minh: \(EF//BC\).
Xem lời giảiCho tam giác \(ABC\), điểm \(M\) thuộc cạnh \(BC\) sao cho \(MC=2MB\). Đường thẳng qua \(M\) song song với \(AC\) cắt \(AB\) ở \(D\).
Xem lời giảiCho điểm \(M\) thuộc đoạn thẳng \(AB\), với \(MA=a,MB=b\). Vẽ hai tam giác đều \(AMC\) và \(BMD\); gọi \(E\) là giao điểm của \(AD\) và \(CM\),
Xem lời giảiMột chiếc kệ bày hoa quả có ba tầng được thiết kế như Hình 59. Tầng đáy có đường kính \(AB\) là 32 cm.
Xem lời giảiCho tam giác \(ABC\) có ba góc nhọn, điểm \(I\) thuộc cạnh \(BC\) và \(IM,IN\) lần lượt là đường phân giác của các góc \(AIC\) và \(AIB\). Chứng minh: \(AN.BI.CM=BN.IC.AM\).
Xem lời giảiCho tam giác \(ABC\) cân tại \(A,AB=10\)cm, \(BC=12\)cm. Gọi \(I\) là giao điểm của các đường phân giác của tam giác \(ABC\). Tính độ dài \(AI\).
Xem lời giảiCho tam giác \(ABC\) có ba góc nhọn, các đường cao \(BD\) và \(CE\) cắt nhau tại \(H\). Chứng minh:
Xem lời giải