Bài 1.10 trang 15 SGK Toán 11 tập 1 - Cùng khám pháKhi một quả bóng được đá lên không trung từ mặt đất, khoảng cách x từ quả bóng đó đến đường thẳng vuông góc với mặt đất tại vị trí đá liên hệ với chiều cao y của nó theo công thức: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Bài 1.10 trang 15 Khi một quả bóng được đá lên không trung từ mặt đất, khoảng cách x từ quả bóng đó đến đường thẳng vuông góc với mặt đất tại vị trí đá liên hệ với chiều cao y của nó theo công thức: \(y = \frac{{ - g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \frac{{x\sin \alpha }}{{\cos \alpha }}\), trong đó \({v_0}\) là vận tốc ban đầu của quả bóng, \(\alpha \) là góc đá quả bóng so với phương nằm ngang và g là gia tốc trọng trường (nguồn: https://pressbooks.uiowa.edu/clonedbook/chapter/projectile-motion/). Chứng minh rằng: \(y = - \frac{{g{x^2}}}{{2v_0^2}}{\tan ^2}\alpha + x\tan \alpha - \frac{{g{x^2}}}{{2v_0^2}}\). Phương pháp giải - Xem chi tiết Áp dụng các hệ thức cơ bản giữa các giá trị lượng giác. Lời giải chi tiết \(\begin{array}{l}y = \frac{{ - g{x^2}}}{{2v_0^2{{\cos }^2}\alpha }} + \frac{{x\sin \alpha }}{{\cos \alpha }} = \frac{{ - g{x^2}}}{{2v_0^2}}.\frac{1}{{{{\cos }^2}\alpha }} + x.\tan \alpha \\ = \frac{{ - g{x^2}}}{{2v_0^2}}.\left( {1 + {{\tan }^2}\alpha } \right) + x.\tan \alpha \\ = \frac{{ - g{x^2}}}{{2v_0^2}}{\tan ^2}\alpha + x.\tan \alpha - \frac{{ - g{x^2}}}{{2v_0^2}}\end{array}\)
|