Bài 1.31 trang 41 SGK Toán 11 tập 1 - Cùng khám phá

Giả sử \(\cos \alpha = m\), với \(\frac{{3\pi }}{2} < \alpha < 2\pi \). Tính các giá trị sau theo m:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Giả sử \(\cos \alpha  = m\), với \(\frac{{3\pi }}{2} < \alpha  < 2\pi \). Tính các giá trị sau theo m:

a) \(\cos \left( {\pi  - \alpha } \right);\)

b) \(\sin \left( {\alpha  + \pi } \right);\)

c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right);\)

d) \(\tan \left( {3\pi  - \alpha } \right).\)

Phương pháp giải - Xem chi tiết

Áp dụng các hệ thức cơ bản của góc lượng giác, công thức giữa các góc lượng giác liên quan đến nhau.

Lời giải chi tiết

a) \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha  =  - m\)

b) \({\sin ^2}\alpha  = 1 - {\cos ^2}\alpha  = 1 - {m^2}\)

\(\frac{{3\pi }}{2} < \alpha  < 2\pi \)\( \Rightarrow \sin \alpha  =  - \sqrt {1 - {m^2}} \)

Ta có: \(\sin \left( {\alpha  + \pi } \right) =  - \sin \alpha  = \sqrt {1 - {m^2}} \)

c) \(\sin \left( {\frac{\pi }{2} + \alpha } \right) = \cos \alpha  = m\)

d) \(\tan \left( {3\pi  - \alpha } \right) = \tan \left( { - \alpha } \right) =  - \tan \alpha  =  - \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{ - \sqrt {1 - {m^2}} }}{m}\)

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close