Giải bài 2 trang 77 SGK Giải tích 12

Tính đạo hàm của các hàm số:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của các hàm số:

LG a

a) \(y = 2xe^x +3sin2x\);

Phương pháp giải:

Sử dụng bảng đạo hàm cơ bản: \(\left( {{e^x}} \right)' = {e^x},\,\left( {\sin kx} \right)' = k\cos kx\) và quy tắc tính đạo hàm của một tích: \(\left( {uv} \right)' = u'.v + u.v'\).

Lời giải chi tiết:

\(y' = (2x{e^x})' + 3(\sin 2x)' \)

\(= 2.(x)'{e^x} + 2x({e^x})'+ {\rm{ }}3.2\cos 2x\)

\( = 2.1.{e^x} + 2x.{e^x} + 6\cos 2x\)

\(=2\left( {1 + x} \right){e^x} + 6\cos 2x\)

LG b

b) \(y = 5x^2- 2^x\cos x\);

Lời giải chi tiết:

\(\begin{array}{l}y'  = \left( {5{x^2}} \right)' - \left( {{2^x}\cos x} \right)'\\= 5.2x - \left( {\left( {{2^x}} \right)'.\cos x + {2^x}.\left( {\cos x} \right)'} \right)\\ = 10x - \left( {{2^x}.\ln 2.\cos x - {2^x}.\sin x} \right)\\ = 10x - {2^x}\left( {\ln 2\cos x - \sin x} \right)\end{array}\)

LG c

c) \(y = \dfrac{{x + 1}}{{{3^x}}}.\)

Lời giải chi tiết:

\(\begin{array}{*{20}{l}}
{y' = \dfrac{{{{\left( {x + 1} \right)}^\prime }{{.3}^x} - \left( {x + 1} \right).{{\left( {{3^x}} \right)}^\prime }}}{{{{\left( {{3^x}} \right)}^2}}}}\\
{{\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} = \dfrac{{{3^x} - \left( {x + 1} \right){{.3}^x}\ln 3}}{{{{\left( {{3^x}} \right)}^2}}}}\\
{{\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} = \dfrac{{{3^x}\left( {1 - \left( {x + 1} \right)\ln 3} \right)}}{{{{\left( {{3^x}} \right)}^2}}}}\\
{{\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} {\mkern 1mu} {\kern 1pt} = \dfrac{{1 - \left( {x + 1} \right)\ln 3}}{{{3^x}}}}
\end{array}\)

Loigiaihay.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close