Bài 2.25 trang 56 SGK Toán 11 tập 1 - Kết nối tri thứcTrong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. ({u_1} = - 1,;{u_{n + 1}} = u_n^2) B. ({u_1} = - 1,;{u_{n + 1}} = 2{u_n}) C. ({u_1} = - 1,;{u_{n + 1}} = {u_n} + 2) D. ({u_1} = - 1,;{u_{n + 1}} = {u_n} - 2) GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Trong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. \({u_1} = - 1,\;{u_{n + 1}} = u_n^2\) B. \({u_1} = - 1,\;{u_{n + 1}} = 2{u_n}\) C. \({u_1} = - 1,\;{u_{n + 1}} = {u_n} + 2\) D. \({u_1} = - 1,\;{u_{n + 1}} = {u_n} - 2\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Để chứng minh dãy số (\({u_n})\) gồm các số khác 0 là một cấp số nhân, hãy chứng minh tỉ số \(\frac{{{u_n}}}{{{u_{n - 1}}}}\) không đổi. Lời giải chi tiết A. Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{u_n^2}}{{{u_n}}} = {u_n}\) phụ thuộc vào n nên (\({u_n})\) thay đổi, do đó\(\left( {{u_n}} \right)\) không phải cấp số nhân. B. Ta có: \(\frac{{{u_{n + 1}}}}{{{{u_n}}}}= 2\), do đó \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 2\). C. Ta có: \({u_{n + 1}}- {u_n} = 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = 2\) . D. Ta có: \({u_{n + 1}}- {u_n} = - 2\), do đó \(\left( {{u_n}} \right)\) là cấp số cộng với \(d = -2\). Vậy ta chọn đáp án B.
|