Giải bài 3 trang 140 SGK Giải tích 12

Giải các phương trình sau trên tập hợp số phức:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau trên tập hợp số phức:

 

LG a

a) \({z^4} + {z^2}-6= 0\);

Phương pháp giải:

Phương pháp giải phương trình \(a{z^4} + b{z^2} + c = 0\,\,\left( {a \ne 0} \right)\).

Bước 1: Đặt \({z^2} = t\), đưa về phương trình bậc hai ẩn t.

Bước 2: Giải phương trình bậc hai ẩn t: \(a{t^2} + bt + c = 0\).

Bước 3: Từ nghiệm t, ta giải tìm nghiệm x bằng cách tìm căn bậc hai của t.

 

Lời giải chi tiết:

Đặt \(t = z^2\) , ta được phương trình \({t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = - 3\end{array} \right.\)

Khi \(t = 2 \Rightarrow {z^2} = 2 \Rightarrow z _{1,2}=  \pm \sqrt 2 \)

Khi \(t =  - 3 \Rightarrow {z^2} =  - 3 \Rightarrow z _{3,4}=  \pm i\sqrt 3 \)

Vậy phương trình có bốn nghiệm là: \(± \sqrt2\) và \(± i\sqrt3\).

 

LG b

b) \({z^4} + 7{z^2} + 10 = 0\)

Lời giải chi tiết:

Đặt \(t = z^2\) , ta được phương trình \({t^2} + 7t + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = - 5\end{array} \right.\)

Khi \(t = -2 \Rightarrow {z^2} =- 2 \Rightarrow z_{1,2} =  \pm i\sqrt 2 \)

Khi \(t =  - 5 \Rightarrow {z^2} =  - 5 \Rightarrow z_{3,4} =  \pm i\sqrt 5 \)

Vậy phương trình có bốn nghiệm là: \(± i\sqrt2\) và \(± i\sqrt5\).

Loigiaihay.com

 

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close