Bài 3.8 trang 74 SGK Toán 11 tập 1 - Cùng khám phá

Tìm các giới hạn sau:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Tìm các giới hạn sau:

a, \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x + 1}}{{x + 2}}\)

b, \(\mathop {\lim }\limits_{x \to 4} \frac{{3 - x}}{{{{(x - 4)}^2}}}\)

c, \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{2x - 4}}\)

Phương pháp giải - Xem chi tiết

a, Chia tử cho mẫu để tính giới hạn hàm số

b, Tính giới hạn tử và giới hạn mẫu để xác định giới hạn hàm số

c, Tính giới hạn tử và giới hạn mẫu để xác định giới hạn hàm số.

Lời giải chi tiết

a, Ta có: \(f(x) = \frac{{{x^2} + x + 1}}{{x + 2}} = x - 1 + \frac{3}{{x + 2}}\)

Vậy \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x + 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to  + \infty } (x - 1 + \frac{3}{{x + 2}}) =  + \infty \).

b, Ta có: \(\mathop {\lim }\limits_{x \to 4} (3 - x) =  - 1\)

               \(\mathop {\lim }\limits_{x \to 4} {(x - 4)^2} = 0\) và \({(x - 4)^2} > 0\)

Vậy \(\mathop {\lim }\limits_{x \to 4} \frac{{3 - x}}{{{{(x - 4)}^2}}} =  - \infty \).

c, Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} {x^2} = 4\)

               \(\mathop {\lim }\limits_{x \to {2^ + }} (2x - 4) = 0\) và 2x – 4>0

\(\)Vậy \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2}}}{{2x - 4}} =  + \infty \).

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close