Bài 5.31 trang 124 SGK Toán 11 tập 1 - Kết nối tri thứcGiải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) (fleft( x right) = left{ {begin{array}{*{20}{c}}{frac{1}{x},;x ne 0}\{1;,;x = 0}end{array}} right.;;)gián đoạn tại (x = 0) b) (gleft( x right) = left{ {begin{array}{*{20}{c}}{1 + x;,;x < 1}\{2 - x;,x ge 1}end{array}} right.;;)gián đoạn tại (x = 1) GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Giải thích tại sao các hàm số sau đây gián đoạn tại điểm đã cho a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{1}{x},\;x \ne 0}\\{1\;,\;x = 0}\end{array}} \right.\;\;\)gián đoạn tại \(x = 0\) b) \(g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{1 + x\;,\;x < 1}\\{2 - x\;,x \ge 1}\end{array}} \right.\;\;\)gián đoạn tại \(x = 1\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Dùng định nghĩa liên tục của hàm số để giải thích Lời giải chi tiết a) \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{1}{x} = + \infty \) \(f\left( 0 \right) = 1\) Vì \(f\left( 0 \right) \ne \mathop {\lim }\limits_{x \to 0} f\left( x \right)\) suy ra hàm số gián đoạn tại \(x = 0\) b) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {1 + x} \right) = 2\) \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {2 - x} \right) = 1\) \(\mathop {\lim }\limits_{x \to {1^ - }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right)\) Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 1} g\left( x \right)\) Vậy hàm số gián đoạn tại \(x = 1\)
|