Bài 7.12 trang 42 SGK Toán 11 tập 2 – Kết nối tri thứcCho hình đóp S.ABC có SA ( bot ) (ABC), Tam giác ABC vuông tại B, SA=AB=BC=a GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Cho hình chóp S.ABC có SA \( \bot \) (ABC), Tam giác ABC vuông tại B, SA=AB=BC=a a) Xác định hình chiếu của A trên mặt phẳng (SBC) b) Tính góc giữa SC và mặt phẳng (ABC). Video hướng dẫn giải Phương pháp giải - Xem chi tiết - Góc giữa đường thẳng a với mặt phẳng (P) là góc giữa a và hình chiếu a’ của nó trên (P). - Xác định hình chiếu tại 1 điểm Lời giải chi tiết a) Trong (SAB) kẻ \(AD \bot SB\) tại D. Ta có: .\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB,SA \subset (SAB)\\AB \cap SA\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot AD\). Ta có: \(\left\{ \begin{array}{l}AD \bot BC\\AD \bot SB\\BC,SB \subset (SBC)\\BC \cap SB\end{array} \right. \Rightarrow AD \bot (SBC)\). Suy ra D là hình chiếu của A trên (SBC). b) A là hình chiếu của S trên (ABC) \(\left( {SA \bot \left( {ABC} \right)} \right)\) C là hình chiếu của C trên (ABC) \( \Rightarrow \) AC là hình chiếu của SC trên (ABC) \( \Rightarrow \) \(\left( {SC,\left( {ABC} \right)} \right) = \left( {SC,AC} \right) = \widehat {SCA}\) Xét tam giác ABC vuông tại B có \(A{C^2} = A{B^2} + B{C^2} = 2{a^2} \Rightarrow AC = a\sqrt 2 \) Xét tam giác SAC vuông tại A có \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{a}{{a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \widehat {SCA} = \arctan \frac{1}{{\sqrt 2 }}\) Vậy \(\left( {SC,\left( {ABCD} \right)} \right) = \arctan \frac{1}{{\sqrt 2 }}\)
|