Bài 8 trang 111 SGK Hình học 12 Nâng caoCho hai mặt phẳng (P) và (Q) lần lượt có phương trình: và . a) Chứng minh rằng (P) và (Q) cắt nhau. Tìm góc giữa hai mặt phẳng đó. b) Viết phương trình đường thẳng d đi qua , song song với cả (P) và (Q). c) Viết phương trình mp(R) đi qua , vuông góc với cả (P) và (Q). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Cho hai mặt phẳng (P) và (Q) lần lượt có phương trình: LG a Chứng minh rằng (P) và (Q) cắt nhau. Tìm góc giữa hai mặt phẳng đó. Lời giải chi tiết: Hai mặt phẳng (P) và (Q) lần lượt có các vectơ pháp tuyến là \(\overrightarrow {{n_P}} = \left( {2; - 1;1} \right)\) và \(\overrightarrow {{n_Q}} = \left( {1;1;2} \right)\). Vì \(\frac{2}{1} \ne \frac{{ - 1}}{1} \ne \frac{1}{2}\) nên hai vectơ đó không cùng phương nên (P) và (Q) cắt nhau. LG b Viết phương trình đường thẳng d đi qua \(A\left( {1;2; - 3} \right)\), song song với cả (P) và (Q). Lời giải chi tiết: Đường thẳng d song song với cả (P) và (Q) nên d có vectơ chỉ phương \(\overrightarrow u \) vuông góc với cả \(\overrightarrow {{n_P}} \) và \(\overrightarrow {{n_Q}} \). Vì \(\left[ {\overrightarrow {{n_P}} .\overrightarrow {{n_Q}} } \right] = \left( { - 3; - 3;3} \right)\) nên ta có thể lấy \(\overrightarrow u = \left( {1;1; - 1} \right)\). LG c Viết phương trình mp(R) đi qua \(B\left( { - 1;3;4} \right)\), vuông góc với cả (P) và (Q). Lời giải chi tiết: \(\left( R \right) \bot \left( P \right)\,\,;\,\,\left( R \right) \bot \left( Q \right)\) Suy ra (R) đi qua \(B\left( { - 1;3;4} \right)\) và có vectơ pháp tuyến \(\overrightarrow u = \left( {1;1; - 1} \right)\) nên (R) có phương trình: \(x + 1 + y - 3 - \left( {z - 4} \right) = 0 \) \(\Leftrightarrow x + y - z + 2 = 0.\) Loigiaihay.com
|