Bài 8.11 trang 63 SGK Toán 11 tập 2 - Cùng khám pháCho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S trên (ABC) trùng với trung điểm H của cạnh BC và SBC là tam giác đều. Tính số đo của góc giữa SA và (ABC). Phương pháp giải - Xem chi tiết Chứng minh \(AH\) là hình chiếu vuông góc của \(SA\) trên \(\left( {ABC} \right)\) từ đó suy ra góc cần tìm là góc \(\widehat {SAH}\) Dựa vào đường trung tuyến của tam giác đều để tính cạnh \(AH,SH\) Sử dụng tỉ số lượng giác: \(\tan \alpha \) để tính số đo góc Lời giải chi tiết Vì hình chiếu vuông góc của \(S\) trên \(\left( {ABC} \right)\) là trung điểm \(H\) của \(BC\) nên \(SH \bot \left( {ABC} \right)\) Vì \(SH \bot \left( {ABC} \right)\) nên \(AH\) là hình chiếu vuông góc của \(SA\) trên \(\left( {ABC} \right)\) Vậy góc giữa \(SA\) và \(\left( {ABC} \right)\) là góc giữa \(SA\) và \(AH\), góc giữa \(SA\) và \(AH\) là góc \(\widehat {SAH}\) Vì \(\Delta ABC\) là tam giác đều cạnh \(a\) suy ra đường trung tuyến \(AH\) nên \(AH = \frac{{a\sqrt 3 }}{2}\) Vì \(\Delta SBC\) là tam giác đều có cạnh \(BC = a\) suy ra đường trung tuyến \(SH = \frac{{a\sqrt 3 }}{2}\) Xét \(\Delta SAH\) vuông tại \(A\) có \(\tan \widehat {SAH} = \frac{{SH}}{{AH}} = \frac{{a\sqrt 3 }}{2}:\frac{{a\sqrt 3 }}{2} = 1\)\( \Rightarrow \widehat {SAH} = {45^o}\)
|