Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng caoTìm giới hạn của các dãy số (un) với GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tìm giới hạn của các dãy số (un) với LG a \({u_n} = - 2{n^3} + 3n + 5\) Lời giải chi tiết: Ta có: \({u_n} = {n^3}\left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right)\) Vì \({{\mathop{\rm limn}\nolimits} ^3} = + \infty \) và \(\lim \left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right) = - 2 < 0\) Nên \(\lim {u_n} = - \infty \) LG b \({u_n} = \sqrt {3{n^4} + 5{n^3} - 7n} \) Lời giải chi tiết: Ta có: \({u_n} = \sqrt {{n^4}\left( {3 + \frac{5}{n} - \frac{7}{{{n^3}}}} \right)} \) \(= {n^2}\sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} \) Vì \(\lim {n^2} = + \infty \) và \(\lim \sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} = \sqrt 3 > 0\) Nên \(\lim {u_n} = + \infty \) Loigiaihay.com
|