Câu 35 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Dùng công thức hạ bậc để giải các phương trình sau :

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Dùng công thức hạ bậc để giải các phương trình sau :

LG a

\({\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x\)

Lời giải chi tiết:

\(\eqalign{& {\sin ^2}4x + {\sin ^2}3x = {\sin ^2}2x + {\sin ^2}x \cr & \Leftrightarrow {1 \over 2}\left( {1 - \cos 8x} \right) + {1 \over 2}\left( {1 - \cos 6x} \right) = {1 \over 2}\left( {1 - \cos 4x} \right) + {1 \over2}\left( {1 - \cos 2x} \right) \cr & \Leftrightarrow 1 - \cos 8x + 1 - \cos 6x = 1 - \cos 4x + 1 - \cos 2x\cr& \Leftrightarrow \cos 8x + \cos 6x = \cos 4x + \cos 2x \cr & \Leftrightarrow 2\cos 7x\cos x = 2\cos 3x\cos x \cr & \Leftrightarrow 2\cos x\left( {\cos 7x - \cos 3x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 7x = \cos 3x} \cr} } \right.\cr& \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right.\cr&\Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{2} + k\pi \\7x = 3x + k2\pi \\7x = - 3x + k2\pi \end{array} \right.\cr&\Leftrightarrow \left[ {\matrix{{x = k{\pi \over 2}} \cr {x = k{\pi \over 5}} \cr} } \right.\,\,\,k \in\mathbb Z \cr} \)

LG b

\({\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2\)

Lời giải chi tiết:

Ta có:

\(\eqalign{& {\cos ^2}x + {\cos ^2}2x + {\cos ^2}3x + {\cos ^2}4x = 2 \cr & \Leftrightarrow {{1 + \cos 2x} \over 2} + {{1 + \cos 4x} \over 2} + {{1 + \cos 6x} \over 2} + {{1 + \cos 8x} \over 2} = 2 \cr & \Leftrightarrow \left( {\cos 2x + \cos 4x} \right) + \left( {\cos 6x + \cos 8x} \right) = 0 \cr & \Leftrightarrow 2\cos 3x\cos x + 2\cos 7x\cos x = 0 \cr & \Leftrightarrow 2\cos x\left( {\cos 3x + \cos 7x} \right) = 0 \cr & \Leftrightarrow 4\cos x\cos 5x\cos 2x = 0 \cr&\Leftrightarrow \left[ {\matrix{{\cos x = 0} \cr {\cos 2x = 0} \cr {\cos 5x = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 2} + k\pi } \cr {x = {\pi \over 4} + k{\pi \over 2}} \cr {x = {\pi \over {10}} + k{\pi \over 5}} \cr} } \right.\,\,\left( {k \in\mathbb Z} \right) \cr} \)

Loigiaihay.com

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close