Viết năm số chính phương đầu theo thứ tự tăng dần. Từ đó, dự đoán công thức tính số chính phương thứ n.
Xem lời giảiCho dãy số (({u_n})) với ({u_n} = 3n + 6). Khẳng định nào sau đây là đúng?
Xem lời giảiCho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công bội (q) a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và (q). b) Dự đoán công thức tính số hạng thứ n theo ({u_1}) và (q).
Xem lời giảiCho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d a) Tính các số hạng ({u_2},{u_3},{u_4},{u_5}) theo ({u_1}) và d b) Dự đoán công thức tính số hạng tổng quát ({u_n}) theo ({u_1}) và d
Xem lời giảiXét dãy số (({u_n})) gồm tất cả các số nguyên dương chia hết cho 5: (5;10;15;20;25;30; ldots ) a) Viết công thức số hạng tổng quát ({u_n}) của dãy số b) Xác định số hạng đầu và viết công thức tính số hạng thứ n theo số hạng thứ n – 1 của dãy số. Công thức thu được gọi là hệ thức truy hồi
Xem lời giảiTrong các dãy số cho bởi công thức truy hồi sau, dãy số nào là cấp số nhân? A. ({u_1} = - 1,;{u_{n + 1}} = u_n^2) B. ({u_1} = - 1,;{u_{n + 1}} = 2{u_n}) C. ({u_1} = - 1,;{u_{n + 1}} = {u_n} + 2) D. ({u_1} = - 1,;{u_{n + 1}} = {u_n} - 2)
Xem lời giảiCho cấp số nhân (left( {{u_n}} right)) với số hạng đầu ({u_1} = a) và công bội (q ne 1) Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
Xem lời giảiCho cấp số cộng (left( {{u_n}} right)) với số hạng đầu ({u_1}) và công sai d Để tính tổng của n số hạng đầu ({S_n} = {u_1} + {u_2} + ldots + {u_{n - 1}} + {u_n})
Xem lời giảia) Xét dãy số (left( {{u_n}} right)) với ({u_n} = 3n - 1). Tính ({u_{n + 1}}) và so sánh với ({u_n}) b) Xét dãy số (left( {{v_n}} right)) với ({v_n} = frac{1}{{{n^2}}}). Tính ({v_{n + 1}}) Và so sánh với ({v_n})
Xem lời giảiTổng 100 số hạng đầu của dãy số (left( {{u_n}} right))với ({u_n} = 2n - 1) là A. 199 B. ({2^{100}} - 1) C. 10 000 D. 9999
Xem lời giải