Cầu sông Hàn là một trong những cây cầu bắc qua sông Hàn ở Đà Nẵng. Đây là cây cầu quay đầu tiên do kĩ sư, công nhân Việt Nam tự thiết kế và thi công. Kiến thức gì trong toán học thể hiện chuyển động có đường đi là đường liền mạch?
Xem chi tiếtHình 5 biểu diễn đồ thị hàm số vận tốc theo biến số t (t là thời gian, đơn vị: giây). Khi các giá trị của biến số t dần tới 0,2 (s) thì các giá trị tương ứng của hàm số v(t) dần tới 0,070 (m/s).
Xem chi tiếtZénon (Zê – nông, 496 – 429 trước Công Nguyên) là một triết gia Hy Lạp ở thành phố Edée đã phát biểu nghịch lí như sau: Trên thực tế, Achilles không đuổi kịp rùa là vô lí. Kiến thức toán học nào có thể giải thích được nghịch lí Zénon nói trên là không đúng?
Xem chi tiếtCho hàm số \(y = f(x)\) xác định trên khoảng \((a;b)\) và \({x_0} \in (a;b)\). Điều kiện cần và đủ để hàm số \(y = f(x)\) liên tục tại \({x_0}\) là:
Xem lời giảiTính các giới hạn sau: a) (lim frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}) b) (lim frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 5{n^2} - 2}}); c) (lim frac{{sqrt {4{n^2} - n + 3} }}{{8n - 5}}); d) (lim left( {4 - frac{{{2^{n + 1}}}}{{{3^n}}}} right)) e) (lim frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}) g) (lim frac{{2 + frac{4}{{{n^3}}}}}{{{6^n}}}).
Xem lời giảiQuan sát đồ thị hàm số (fleft( x right) = x) ở Hình 11. a) Tính (mathop {lim }limits_{x to 1} fleft( x right).) b) So sánh (mathop {lim }limits_{x to 1} fleft( x right)) với (fleft( 1 right).)
Xem lời giảiXét hàm số (fleft( x right) = 2x.) a) Xét dãy số (left( {{x_n}} right),) với ({x_n} = 1 + frac{1}{n}.) Hoàn thành bảng giá trị (fleft( {{x_n}} right)) tương ứng.
Xem lời giải