Dạng 4. Tính bằng cách hợp lí Chủ đề 6 Ôn hè Toán 6Tải vềSử dụng các tính chất của phép cộng, phép nhân phân số: +) Phép cộng: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn
Tải về
Lý thuyết Sử dụng các tính chất của phép cộng, phép nhân phân số: +) Phép cộng: + Tính chất giao hoán: \(\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{c}{d} + \dfrac{a}{b}\) + Tính chất kết hợp: \(\left( {\dfrac{a}{b} + \dfrac{c}{d}} \right) + \dfrac{p}{q} = \dfrac{a}{b} + \left( {\dfrac{c}{d} + \dfrac{p}{q}} \right)\) + Cộng với số \(0\) : \(\dfrac{a}{b} + 0 = 0 + \dfrac{a}{b} = \dfrac{a}{b}\) +) Phép nhân: + Tính chất giao hoán: \(\dfrac{a}{b}.\dfrac{c}{d} = \dfrac{c}{d}.\dfrac{a}{b}\) + Tính chất kết hợp: \(\left( {\dfrac{a}{b}.\dfrac{c}{d}} \right).\dfrac{p}{q} = \dfrac{a}{b}.\left( {\dfrac{c}{d}.\dfrac{p}{q}} \right)\) + Nhân với số \(1\): \(\dfrac{a}{b}.1 = 1.\dfrac{a}{b} = \dfrac{a}{b}\), nhân với số \(0\): \(\dfrac{a}{b}.0 = 0\) + Tính chất phân phối của phép nhân đối với phép cộng: \(\dfrac{a}{b}.\left( {\dfrac{c}{d} + \dfrac{p}{q}} \right) = \dfrac{a}{b}.\dfrac{c}{d} + \dfrac{a}{b}.\dfrac{p}{q}\) Chú ý: Thứ tự thực hiện phép tính như đối với số nguyên Bài tập Bài 1: Tính nhanh: a) \(\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\) b) \(\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\) c) \(\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\) Bài 2: Tính bằng cách hợp lí: a) \(A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\) b) \(B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\) Hướng dẫn giải chi tiết Bài 1: Tính nhanh: a) \(\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\) b) \(\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\) c) \(\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\) Phương pháp Áp dụng tính chất giao hoán và phân phối của phép nhân đối với phép cộng Lời giải a) \(\begin{array}{l}\dfrac{{ - 2}}{7}.\dfrac{{125}}{9}:\dfrac{3}{{14}}:{( - 5)^2}\\ = \dfrac{{ - 2}}{7}.\dfrac{{125}}{9}.\dfrac{{14}}{3}:25\\ = \dfrac{{ - 2}}{7}.\dfrac{{125}}{9}.\dfrac{{14}}{3}.\dfrac{1}{{25}}\\ = \left( {\dfrac{{ - 2}}{7}.\dfrac{{14}}{3}} \right).\left( {\dfrac{{125}}{9}.\dfrac{1}{{25}}} \right)\\ = \dfrac{{ - 4}}{3}.\dfrac{5}{9}\\ = \dfrac{{ - 20}}{{27}}\end{array}\) b) \(\begin{array}{l}\dfrac{{35}}{{17}} + \dfrac{2}{{13}} - \left( {\dfrac{{ - 11}}{{13}} + 1\dfrac{1}{{17}}} \right)\\ = \dfrac{{35}}{{17}} + \dfrac{2}{{13}} + \dfrac{{11}}{{13}} - 1\dfrac{1}{{17}}\\ = \left( {\dfrac{{35}}{{17}} - 1\dfrac{1}{{17}}} \right) + \left( {\dfrac{2}{{13}} + \dfrac{{11}}{{13}}} \right)\\ = \left( {\dfrac{{35}}{{17}} - \dfrac{{18}}{{17}}} \right) + \dfrac{{13}}{{13}}\\ = \dfrac{{17}}{{17}} + \dfrac{{13}}{{13}}\\ = 1 + 1\\ = 2\end{array}\) c) \(\begin{array}{l}\dfrac{{13}}{{23}}.\dfrac{{37}}{{32}} - \dfrac{{37}}{{32}}.\dfrac{{11}}{{23}} + \dfrac{2}{{23}}\\ = \dfrac{{37}}{{32}}.\left( {\dfrac{{13}}{{23}} - \dfrac{{11}}{{23}}} \right) + \dfrac{2}{{23}}\\ = \dfrac{{37}}{{32}}.\dfrac{2}{{23}} + \dfrac{2}{{23}}\\ = \dfrac{2}{{23}}.\left( {\dfrac{{37}}{{32}} + 1} \right)\\ = \dfrac{2}{{23}}.\dfrac{{69}}{{32}}\\ = \dfrac{3}{{16}}\end{array}\)
Bài 2: Tính bằng cách hợp lí: a) \(A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\) b) \(B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\) Phương pháp Tìm mối liên hệ giữa các phép tính trong biểu thức Lời giải a) \(\begin{array}{l}A = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left( {\dfrac{{ - 4}}{{13}} + 1\dfrac{1}{5}} \right)\\ = \left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right):\left[ {2.\left( {\dfrac{{ - 2}}{{13}} + \dfrac{3}{5}} \right)} \right]\\ = \dfrac{1}{2}\end{array}\) b) \(\begin{array}{l}B = \dfrac{{\dfrac{2}{{11}} + \dfrac{2}{{13}} - \dfrac{2}{{15}} - \dfrac{2}{{17}}}}{{\dfrac{7}{{11}} + \dfrac{7}{{13}} - \dfrac{7}{{15}} - \dfrac{7}{{17}}}}\\ = \dfrac{{2.\left( {\dfrac{1}{{11}} + \dfrac{1}{{13}} - \dfrac{1}{{15}} - \dfrac{1}{{17}}} \right)}}{{7.\left( {\dfrac{1}{{11}} + \dfrac{1}{{13}} - \dfrac{1}{{15}} - \dfrac{1}{{17}}} \right)}}\\ = \dfrac{2}{7}\end{array}\)
|