Giải bài 1 trang 15 sách bài tập toán 9 - Chân trời sáng tạo tập 2Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) 5x2 – 9x + 1 = 0 b) 9x2 – 12x + 4 = 0 c) 4x2 + 9x + 12 = 0 d) 5x2 – (2sqrt 3 )x – 3 = 0 GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của mỗi phương trình: a) 5x2 – 9x + 1 = 0 b) 9x2 – 12x + 4 = 0 c) 4x2 + 9x + 12 = 0 d) 5x2 – \(2\sqrt 3 \)x – 3 = 0 Phương pháp giải - Xem chi tiết Dựa vào: Nếu phương trình bậc hai ax2 + bx + c = 0 (a\( \ne \)0) có nghiệm x1, x2 thì tổng và tích của hai nghiệm đó là: \(S = {x_1} + {x_2} = - \frac{b}{a};P = {x_1}.{x_2} = \frac{c}{a}\) Lời giải chi tiết a) Ta có \(\Delta = 61 > 0\) nên phương trình có hai nghiệm phân biệt x1, x2. Theo định lí Viète, ta có \({x_1} + {x_2} = - \frac{b}{a} = \frac{9}{5};{x_1}.{x_2} = \frac{c}{a} = \frac{1}{5}.\) b) Ta có \(\Delta ' = 0\) nên phương trình có nghiệm kép. Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{b}{a} = \frac{{12}}{9} = \frac{4}{3};{x_1}.{x_2} = \frac{c}{a} = \frac{4}{9}\). c) Ta có \(\Delta = - 111 < 0\) nên phương trình vô nghiệm. d) Phương trình a = 5 và c = - 3 trái dấu nên phương trình có hai nghiệm phân biệt x1, x2. Theo định lí Viète, ta có: \({x_1} + {x_2} = - \frac{b}{a} = \frac{{2\sqrt 3 }}{5};{x_1}.{x_2} = \frac{c}{a} = - \frac{3}{5}\).
|