Giải bài 1.27 trang 21 SGK Toán 8 tập 1 - Kết nối tri thức

Làm tính nhân:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Làm tính nhân:

a)      \(\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\)

b)      \(\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Muốn nhân hai đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các kết quả với nhau.

Lời giải chi tiết

a) \(\left( {{x^2} - xy + 1} \right)\left( {xy + 3} \right)\)

\(\begin{array}{l} = {x^2}.xy + {x^2}.3 - xy.xy - xy.3 + 1.xy + 1.3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} - 3xy + xy + 3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} + \left( { - 3xy + xy} \right) + 3\\ = {x^3}y + 3{x^2} - {x^2}{y^2} - 2xy + 3\end{array}\)

b) \(\left( {{x^2}{y^2} - \dfrac{1}{2}xy + 2} \right)\left( {x - 2y} \right)\)

\(\begin{array}{l} = {x^2}{y^2}.x - {x^2}{y^2}.2y - \dfrac{1}{2}xy.x + \dfrac{1}{2}xy.2y + 2.x - 2.2y\\ = {x^3}{y^2} - 2{x^2}{y^3} - \dfrac{1}{2}{x^2}y + x{y^2} + 2x - 4y\end{array}\)

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close