Giải bài 15 trang 9 sách bài tập toán 12 - Cánh diềuXét dao động điều hoà của một chất điểm có vận tốc tức thời tại thời điểm \(t\) là: \(v\left( t \right) = - 0,2\pi \sin \left( {\pi t} \right)\), trong đó, \(t\) tính bằng giây, \(v\left( t \right)\) tính bằng \(m/s\). Tìm phương trình li độ \(x\left( t \right)\), biết \(v\left( t \right)\) là đạo hàm của \(x\left( t \right)\) và \(x\left( 0 \right) = 0,2\left( m \right)\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Xét dao động điều hoà của một chất điểm có vận tốc tức thời tại thời điểm \(t\) là: \(v\left( t \right) = - 0,2\pi \sin \left( {\pi t} \right)\), trong đó, \(t\) tính bằng giây, \(v\left( t \right)\) tính bằng \(m/s\). Tìm phương trình li độ \(x\left( t \right)\), biết \(v\left( t \right)\) là đạo hàm của \(x\left( t \right)\) và \(x\left( 0 \right) = 0,2\left( m \right)\). Phương pháp giải - Xem chi tiết ‒ Sử dụng tính chất của nguyên hàm: Cho hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(K\). • \(\int {kf\left( x \right)dx} = k\int {f\left( x \right)dx} \) với \(k\) là hằng số khác 0. • \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} + \int {g\left( x \right)dx} \). • \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int {f\left( x \right)dx} - \int {g\left( x \right)dx} \). ‒ Sử dụng công thức \(\int {F'\left( x \right)dx} = F\left( x \right) + C\) với \(F\left( x \right)\) là hàm số có đạo hàm liên tục. Lời giải chi tiết Ta có: \(\int {v\left( t \right)dt} = \int {\left[ { - 0,2\pi \sin \left( {\pi t} \right)} \right]dt} = 0,2\int {\left[ { - \pi \sin \left( {\pi t} \right)} \right]dt} = 0,2\int {{{\left[ {\cos \left( {\pi t} \right)} \right]}^\prime }dt} = 0,2\cos \left( {\pi t} \right) + C\) Vì \(x'\left( t \right) = v\left( t \right)\) nên \(x\left( t \right) = \int {v\left( t \right)dt} = 0,2\cos \left( {\pi t} \right) + C\). \(x\left( 0 \right) = 0,2\left( m \right) \Leftrightarrow 0,2\cos \left( {\pi .0} \right) + C = 0,2 \Leftrightarrow C = 0\). Vậy \(x\left( t \right) = 0,2\cos \left( {\pi t} \right)\).
|