Bài 1.51 trang 25 SBT giải tích 12Giải bài 1.51 trang 25 sách bài tập giải tích 12. Tiệm cận đứng của đồ thị hàm số... GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}}\) là: A. \(x = 2\) B. \(x = \pm \sqrt 5 \) C. \(x = \pm 1\) D. \(x = 3\) Phương pháp giải - Xem chi tiết Sử dụng lý thuyết: - Tiệm cận đứng: Đường thẳng \(x = {x_0}\) được gọi là tiệm cận đứng của đồ thị hàm số \(y = f\left( x \right)\) nếu nó thỏa mãn một trong 4 điều kiện sau: \(\left[ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \\\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \end{array} \right.\) Lời giải chi tiết Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {\sqrt 5 } \right)}^ + }} \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}} = + \infty \) nên \(x = \sqrt 5 \) là đường tiệm cận đứng. \(\mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - \sqrt 5 } \right)}^ + }} \dfrac{{2{x^2} - x + 2}}{{{x^2} - 5}} = - \infty \) nên \(x = - \sqrt 5 \) là đường tiệm cận đứng. Vậy đồ thị hàm số có tiệm cận đứng là các đường thẳng \(x = \pm \sqrt 5 \). Chọn B. Loigiaihay.com
|