Giải bài 2 trang 14 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Biểu diễn các giá trị lượng giác sau qua các giá trị lượng giác của góc có số đo từ 0 đến \(\frac{\pi }{4}\) (hoặc từ \({0^0}\) đến \({45^0}\)):

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Biểu diễn các giá trị lượng giác sau qua các giá trị lượng giác của góc có số đo từ 0 đến \(\frac{\pi }{4}\) (hoặc từ \({0^0}\) đến \({45^0}\)):

a) \(\sin \left( { - {{1693}^0}} \right)\);

b) \(\cos \frac{{1003\pi }}{3}\);

c) \(\tan {885^0}\);

d) \(\cot \left( { - \frac{{53\pi }}{{10}}} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt:

a) \(\sin \left( { - \alpha } \right) =  - \sin \alpha \), \(\sin \left( {\pi  + \alpha } \right) =  - \sin \alpha \), \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \), \(\sin \left( {2\pi  + \alpha } \right) = \sin \alpha \)

b) \(\cos \left( {\alpha  + 2\pi } \right) = \cos \alpha \), \(\cos \left( {\frac{\pi }{2} - \alpha } \right) = \sin \alpha \)

c) \(\tan \left( {\pi  - \alpha } \right) =  - \tan \alpha \), \(\tan \left( {\alpha  + 2\pi } \right) = \tan \alpha \)

d) \(\cot \left( { - \alpha } \right) =  - \cot \alpha \), \(\cot \left( {\pi  - \alpha } \right) =  - \cot \alpha \), \(\cot \left( {\frac{\pi }{2} - \alpha } \right) = \tan \alpha \), \(\cot \left( {\alpha  + 2\pi } \right) = \cot \alpha \)

Lời giải chi tiết

a) \(\sin \left( { - {{1693}^0}} \right) \) \( =  - \sin \left( {{{360}^0}.4 + {{180}^0} + {{73}^0}} \right) \) \( = \sin {73^0} \) \( = \sin \left( {{{90}^0} - {{17}^0}} \right) \) \( = \cos {17^0}\);

b) \(\cos \frac{{1003\pi }}{3} \) \( = \cos \left( {167.2\pi  + \frac{\pi }{3}} \right) \) \( = \cos \frac{\pi }{3} \) \( = \cos \left( {\frac{\pi }{2} - \frac{\pi }{6}} \right) \) \( = \sin \frac{\pi }{6}\);

c) \(\tan {885^0} \) \( = \tan \left( {{{2.360}^0} + {{180}^0} - {{15}^0}} \right) \) \( =  - \tan {15^0}\);

d) \(\cot \left( { - \frac{{53\pi }}{{10}}} \right) \) \( = \cot \left( { - 4\pi  - \pi  - \frac{{3\pi }}{{10}}} \right) \) \( =  - \cot \frac{{3\pi }}{{10}} \) \( =  - \cot \left( {\frac{\pi }{2} - \frac{\pi }{5}} \right) \) \( =  - \tan \frac{\pi }{5}\).

Tham Gia Group Dành Cho Lớp 11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close