Bài 2.103 trang 137 SBT giải tích 12Giải bài 2.103 trang 137 sách bài tập giải tích 12. Tìm tập nghiệm của bất phương trình... GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Tìm tập nghiệm của bất phương trình \(\displaystyle {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\). A. \(\displaystyle \left( { - \infty ;\frac{1}{2}} \right)\) B. \(\displaystyle \left( {\frac{1}{2}; + \infty } \right)\) C. \(\displaystyle \left( {0;\frac{1}{2}} \right)\) D. \(\displaystyle \left( { - \frac{1}{2};\frac{1}{2}} \right)\) Phương pháp giải - Xem chi tiết Sử dụng so sánh mũ \(\displaystyle {a^m} < {a^n} \Leftrightarrow m > n\) khi \(\displaystyle 0 < a < 1\). Lời giải chi tiết Ta có: \(\displaystyle {\left( {\frac{1}{3}} \right)^{\frac{1}{x}}} < {\left( {\frac{1}{3}} \right)^2}\)\(\displaystyle \Leftrightarrow \frac{1}{x} > 2 \Leftrightarrow \frac{{1 - 2x}}{x} > 0\) \(\displaystyle \Leftrightarrow 0 < x < \frac{1}{2}\). Vậy tập nghiệm là \(\displaystyle \left( {0;\frac{1}{2}} \right)\). Chọn C. Loigiaihay.com
|