Giải bài 23 trang 41 sách bài tập toán 8 - Cánh diềuRút gọn rồi tính giá trị của biểu thức: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Rút gọn rồi tính giá trị của biểu thức: a) \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại \(x = 5;y = 7\) b) \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\) c) \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại \(x = - 15;y = 5\) Phương pháp giải - Xem chi tiết Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức. Lời giải chi tiết a) Rút gọn biểu thức: \(A \) \( = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}} \) \( = \left( {\frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}} \right).\frac{{x - y}}{{2y}} \) \( = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}} \) \( = \frac{y}{{x + y}}\) Giá trị của biểu thức \(A\) tại \(x \) \( = 5;y \) \( = 7\) là: \(\frac{7}{{5 + 7}} \) \( = \frac{7}{{12}}\). b) Rút gọn biểu thức: \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\\ \) \( = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{{{\left( {2x} \right)}^2} - {y^2}}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\\ \) \( = \frac{{\left( {2x + y} \right)\left( {2x + y} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} - \frac{{8xy}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\\ \) \( = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ \) \( = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} \) \( = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\) Giá trị của biểu thức\(B\) tại \(x \) \( = - \frac{1}{2};y \) \( = \frac{3}{2}\) là: \(\frac{{2\left( {2. - \frac{1}{2} - \frac{3}{2}} \right)}}{{ - \frac{1}{2}\left( {2.\frac{{ - 1}}{2} + \frac{3}{2}} \right)}} \) \( = 20\) c) Rút gọn biểu thức: \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{\left( {x + y} \right)\left( {x - y} \right) + {x^2} + xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right) - \frac{x}{y}\\ \) \( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}}} \right) - \frac{x}{y}\\ \) \( = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{2{x^2} + xy}}{{{x^3} - {y^3}}} - \frac{x}{y}\\ \) \( = \frac{{\left( {{x^3} - {y^3}} \right).x.\left( {2x + y} \right)}}{{xy.\left( {{x^3} - {y^3}} \right)}} - \frac{x}{y}\\ \) \( = \frac{{2x + y}}{y} - \frac{x}{y} \) \( = \frac{{x + y}}{y}\) Giá trị của biểu thức \(C\) tại \(x \) \( = - 15;y \) \( = 5\) là: \(\frac{{ - 15 + 5}}{5} \) \( =- 2\)
|