Bài 2.86 trang 135 SBT giải tích 12Giải bài 2.86 trang 135 sách bài tập giải tích 12. Số nghiệm của phương trình... GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Số nghiệm của phương trình \(\displaystyle \lg \left( {{x^2} - 6x + 7} \right) = \lg \left( {x - 3} \right)\) là: A. \(\displaystyle 2\) B. \(\displaystyle 1\) C. \(\displaystyle 0\) D. Vô số Phương pháp giải - Xem chi tiết Sử dụng công thức \(\displaystyle {\log _a}f\left( x \right) = {\log _a}g\left( x \right)\) \(\displaystyle \Leftrightarrow f\left( x \right) = g\left( x \right)\) Lời giải chi tiết ĐK: \(\displaystyle \left\{ \begin{array}{l}{x^2} - 6x + 7 > 0\\x - 3 > 0\end{array} \right.\) Ta có: \(\displaystyle \lg \left( {{x^2} - 6x + 7} \right) = \lg \left( {x - 3} \right)\)\(\displaystyle \Leftrightarrow {x^2} - 6x + 7 = x - 3\) \(\displaystyle \Leftrightarrow {x^2} - 7x + 10 = 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}x = 5\left( {TM} \right)\\x = 2\left( {KTM} \right)\end{array} \right.\) Vậy phương trình có nghiệm duy nhất \(\displaystyle x = 5\). Chọn B. Loigiaihay.com
|