Giải bài 3 (7.14) trang 34 vở thực hành Toán 7 tập 2Cho hai đa thức (A = 6{x^4} - 4{x^3} + x - frac{1}{3}) và (B = - 3{x^4} - 2{x^3} - 5{x^2} + x + frac{2}{3}). Tính (A + B) và (A - B). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Cho hai đa thức \(A = 6{x^4} - 4{x^3} + x - \frac{1}{3}\) và \(B = - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}\). Tính \(A + B\) và \(A - B\). Phương pháp giải - Xem chi tiết Để cộng (trừ) hai đa thức: Cách 1: Viết hai đa thức trong dấu ngoặc và nối chúng bởi dấu “+” (hay “\( - \)”). Sau đó bỏ dấu ngoặc rồi nhóm các hạng tử cùng bậc và thu gọn. Cách 2: Đặt tính cộng (trừ) sao cho các hạng tử cùng bậc của hai đa thức thì thẳng cột với nhau rồi cộng (trừ) theo từng cột. Lời giải chi tiết Cách thứ nhất:
Cách thứ hai: \(A + B = \left( {6{x^4} - 4{x^3} + x - \frac{1}{3}} \right) + \left( { - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}} \right)\) \( = \left( {6{x^4} - 3{x^4}} \right) + \left( { - 4{x^3} - 2{x^3}} \right) - 5{x^2} + \left( {x + x} \right) + \left( { - \frac{1}{3} + \frac{2}{3}} \right)\) \( = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \frac{1}{3}\) \(A - B = \left( {6{x^4} - 4{x^3} + x - \frac{1}{3}} \right) - \left( { - 3{x^4} - 2{x^3} - 5{x^2} + x + \frac{2}{3}} \right)\) \( = 6{x^4} - 4{x^3} + x - \frac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \frac{2}{3}\) \( = \left( {6{x^4} + 3{x^4}} \right) + \left( { - 4{x^3} + 2{x^3}} \right) + 5{x^2} + \left( {x - x} \right) + \left( { - \frac{1}{3} - \frac{2}{3}} \right)\) \( = 9{x^4} - 2{x^3} + 5{x^2} - 1\)
|