Bài 3.4 trang 164 SBT giải tích 12

Giải bài 3.4 trang 164 sách bài tập giải tích 12. Tính các nguyên hàm sau bằng phương pháp đổi biến số:...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Tính các nguyên hàm sau bằng phương pháp đổi biến số:

LG câu a

a) \(\int {{x^2}\sqrt[3]{{1 + {x^3}}}} dx\)  với \(x >  - 1\) (đặt \(t = 1 + {x^3}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = 1 + {x^3}\)\( \Rightarrow dt = 3{x^2}dx \Rightarrow {x^2}dx = \dfrac{{dt}}{3}\).

Khi đó \(\int {{x^2}\sqrt[3]{{1 + {x^3}}}} dx = \int {\sqrt[3]{t}.\dfrac{{dt}}{3}} \) \( = \dfrac{1}{3}\int {{t^{\dfrac{1}{3}}}dt}  = \dfrac{1}{3}.\dfrac{{{t^{\dfrac{1}{3} + 1}}}}{{\dfrac{1}{3} + 1}} + C\) \( = \dfrac{1}{4}{t^{\dfrac{4}{3}}} + C = \dfrac{1}{4}{\left( {1 + {x^3}} \right)^{\dfrac{4}{3}}} + C\)

LG câu b

b) \(\int {x{e^{ - {x^2}}}} dx\)  (đặt \(t = {x^2}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = {x^2} \Rightarrow dt = 2xdx\) \( \Rightarrow xdx = \dfrac{{dt}}{2}\)

Khi đó \(\int {x{e^{ - {x^2}}}} dx = \int {{e^{ - t}}.\dfrac{{dt}}{2}} \)\( =  - \dfrac{1}{2}{e^{ - t}} + C =  - \dfrac{1}{2}{e^{ - {x^2}}} + C\).

LG câu c

c) \(\int {\dfrac{x}{{{{(1 + {x^2})}^2}}}} dx\)   (đặt \(t = 1 + {x^2}\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = 1 + {x^2}\)\( \Rightarrow dt = 2xdx \Rightarrow xdx = \dfrac{{dt}}{2}\).

Khi đó, \(\int {\dfrac{x}{{{{(1 + {x^2})}^2}}}} dx = \int {\dfrac{1}{{{t^2}}}.\dfrac{{dt}}{2}}  = \dfrac{1}{2}\int {\dfrac{{dt}}{{{t^2}}}} \) \( =  - \dfrac{1}{2}.\dfrac{1}{t} + C =  - \dfrac{1}{{2\left( {1 + {x^2}} \right)}} + C\)

LG câu d

d) \(\int {\dfrac{1}{{(1 - x)\sqrt x }}} dx\) (đặt \(t = \sqrt x \))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \sqrt x  \Rightarrow dt = \dfrac{1}{{2\sqrt x }}dx\)\( \Rightarrow \dfrac{{dx}}{{\sqrt x }} = 2dt\) và \(x = {t^2}\).

Khi đó \(\int {\dfrac{1}{{(1 - x)\sqrt x }}} dx\)\( = \int {\dfrac{1}{{\left( {1 - {t^2}} \right)}}.2dt}  = \int {\dfrac{2}{{1 - {t^2}}}dt} \) \( = \int {\left( {\dfrac{1}{{1 - t}} + \dfrac{1}{{1 + t}}} \right)dt} \)

\( =  - \ln \left| {1 - t} \right| + \ln \left| {1 + t} \right| + C\) \( = \ln \left| {\dfrac{{1 + t}}{{1 - t}}} \right| + C\)\( = \ln \left| {\dfrac{{1 + \sqrt x }}{{1 - \sqrt x }}} \right| + C\).

LG câu e

e) \(\int {\sin \dfrac{1}{x}.\dfrac{1}{{{x^2}}}} dx\)  (đặt \(t = \dfrac{1}{x}\) )

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \dfrac{1}{x}\)\( \Rightarrow dt =  - \dfrac{1}{{{x^2}}}dx \Rightarrow \dfrac{{dx}}{{{x^2}}} =  - dt\).

Khi đó \(\int {\sin \dfrac{1}{x}.\dfrac{1}{{{x^2}}}} dx\)\( = \int {\sin t.\left( { - dt} \right)}  = \int {\left( { - \sin t} \right)dt} \) \( = \cos t + C = \cos \dfrac{1}{x} + C\)

LG câu g

g) \(\int {\dfrac{{{{(\ln x)}^2}}}{x}} dx\)  (đặt \(t = \ln x\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \ln x\)\( \Rightarrow dt = \dfrac{{dx}}{x}\). Khi đó

\(\int {\dfrac{{{{(\ln x)}^2}}}{x}} dx = \int {{t^2}.dt} \)\( = \dfrac{{{t^3}}}{3} + C = \dfrac{{{{\ln }^3}x}}{3} + C\)

LG câu h

h) \(\int {\dfrac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\)   (đặt \(t = \cos x\))

Phương pháp giải:

Đặt \(t = u\left( x \right)\), tính \(dx\) theo \(dt\) thay vào nguyên hàm cần tính.

Giải chi tiết:

Đặt \(t = \cos x\)\( \Rightarrow dt =  - \sin xdx\).

Khi đó \(\int {\dfrac{{\sin x}}{{\sqrt[3]{{{{\cos }^2}x}}}}} dx\)\( = \int {\dfrac{{ - dt}}{{\sqrt[3]{{{t^2}}}}}}  = \int { - {t^{ - \dfrac{2}{3}}}dt} \) \( =  - \dfrac{{{t^{ - \dfrac{2}{3} + 1}}}}{{ - \dfrac{2}{3} + 1}} + C =  - 3{t^{\dfrac{1}{3}}} + C\) \( =  - 3\sqrt[3]{t} + C =  - 3\sqrt[3]{{\cos x}} + C\).

Loigiaihay.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close