Giải bài 3.4 trang 32 sách bài tập toán 9 - Kết nối tri thức tập 1

Sử dụng các hằng đẳng thức đáng nhớ hiệu hai bình phương và bình phương của một hiệu, rút gọn: a) (left( {sqrt 3 + sqrt 2 } right)left( {sqrt 3 - sqrt 2 } right)); b) (sqrt {2 - 2sqrt 2 + 1} ).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Sử dụng các hằng đẳng thức đáng nhớ hiệu hai bình phương và bình phương của một hiệu, rút gọn:

a) \(\left( {\sqrt 3  + \sqrt 2 } \right)\left( {\sqrt 3  - \sqrt 2 } \right)\);

b) \(\sqrt {2 - 2\sqrt 2  + 1} \).

Phương pháp giải - Xem chi tiết

+ \(\sqrt {{A^2}}  = \left| A \right|\) với mọi biểu thức A.

+ \({\left( {\sqrt x } \right)^2} = x\left( {x \ge 0} \right)\).

Lời giải chi tiết

a) \(\left( {\sqrt 3  + \sqrt 2 } \right)\left( {\sqrt 3  - \sqrt 2 } \right) \)

\(= {\left( {\sqrt 3 } \right)^2} - {\left( {\sqrt 2 } \right)^2} = 3 - 2 = 1\);

b) \(\sqrt {2 - 2\sqrt 2  + 1}  = \sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}} \)

\(= \left| {\sqrt 2  - 1} \right| = \sqrt 2  - 1\).

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close