Giải bài 4 trang 31 sách bài tập toán 12 - Chân trời sáng tạo

Với giá trị nào của \(m\) thì đồ thị của hàm số \(y = - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Với giá trị nào của \(m\) thì đồ thị của hàm số \(y =  - {x^3} - 3{x^2} + mx + 1\) có tâm đối xứng nằm trên trục \(Ox\)? Khi đó, có thể kết luận gì về số giao điểm của đồ thị hàm số với trục hoành?

Phương pháp giải - Xem chi tiết

‒ Hoành độ tâm đối xứng là nghiệm của phương trình $y''=0$.

‒ Để kết luận về số giao điểm của đồ thị hàm số với trục hoành, ta dựa vào dấu của tung độ hai cực trị của phương trình \(y' = 0\).

Lời giải chi tiết

\(y'=-3{{x}^{2}}-6x+m;y''=-6x-6;y''=0\Leftrightarrow x=-1\)

Tâm đối xứng \(I\) của đồ thị hàm số có tung độ \(y =  - {\left( { - 1} \right)^3} - 3.{\left( { - 1} \right)^2} + m.\left( { - 1} \right) + 1 =  - m - 1\).

\(I\) nằm trên trục \(Ox \Leftrightarrow y = 0 \Leftrightarrow  - m - 1 = 0 \Leftrightarrow m =  - 1\).

Khi \(m =  - 1\), hàm số có dạng \(y =  - {x^3} - 3{x^2} - x + 1\).

Khi đó \(y' =  - 3{x^2} - 6x - 1\).

Phương trình \(y' = 0\) có biệt thức \(\Delta ' = {\left( { - 3} \right)^2} - \left( { - 3} \right).\left( { - 1} \right) = 6 > 0\). Do đó phương trình \(y' = 0\) có hai nghiệm phân biệt, suy ra đồ thị hàm số có hai cực trị đối xứng qua \(I\left( { - 1;0} \right)\).

Do đó tung độ của hai cực trị trái dấu nhau nên đồ thị hàm số cắt trục \(Ox\) tại 3 điểm phân biệt.

  • Giải bài 5 trang 31 sách bài tập toán 12 - Chân trời sáng tạo

    Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = 3 + frac{1}{x}); b) (y = 2 - frac{1}{{1 + x}}).

  • Giải bài 6 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Ta đã biết đồ thị hàm số \(y = \frac{{2{\rm{x}} - 1}}{{x + 1}}\) có tiệm cận đứng là đường thẳng \(x = - 1\) và tiệm cận ngang là đường thẳng \(y = 2\). a) Tìm toạ độ giao điểm \(I\) của đường tiệm cận. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). Tìm các tung độ \(y\left( {{x_M}} \right)\) và \(y\left( {{x_{M'}}} \right)\). Từ đó, chứng minh rằng hai đ

  • Giải bài 7 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{2{\rm{x}} - 1}}{{ - x + 3}}\). Chứng tỏ rằng đường thẳng \(y = - x\) cắt đồ thị hàm số đã cho tại hai điểm phân biệt.

  • Giải bài 8 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = frac{{{x^2} - 2{rm{x}} + 2}}{{{rm{x}} - 1}}); b) (y = - 2{rm{x}} + frac{1}{{2{rm{x}} + 1}}).

  • Giải bài 9 trang 32 sách bài tập toán 12 - Chân trời sáng tạo

    Cho hàm số \(y = \frac{{{x^2} + 2{\rm{x}} - 2}}{{{\rm{x}} - 1}}\) a) Tìm toạ độ giao điểm \(I\) của hai đường tiệm cận của đồ thị hàm số. b) Với \(t\) tuỳ ý \(\left( {t \ne 0} \right)\), gọi \(M\) và \(M'\) lần lượt là hai điểm trên đồ thị hàm số có hoành độ lần lượt là \({x_M} = {x_I} - t\) và \({x_{M'}} = {x_I} + t\). So sánh các tung độ \({y_M}\) và \({y_{M'}}\). Từ đó, suy ra rằng hai điểm \(M\) và \(M'\) đối xứng với nhau qua \(I\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close