Giải bài 5 trang 65 vở thực hành Toán 7Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\) GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Bài 5. Cho tam giác ABC bằng tam giác DEF. Trên các cạnh AC và DF lấy các điểm X, Y sao cho AX = DY . Chứng minh rằng \(\widehat {BXC} = \widehat {EYF}\) Phương pháp giải - Xem chi tiết Hai tam giác bằng nhau thì các góc tương ứng bằng nhau. Lời giải chi tiết
Vì \(\Delta ABC = \Delta DEF\) nên ta có AC = DF, BC = EF, \(\widehat C = \widehat F\) Từ đây ta suy ra CX = AC – AX = DF – DY = FY. Xét hai tam giác CBX và FEY ta có BC = EF, \(\widehat C = \widehat F\), CX = FY (chứng minh trên) Vậy \(\Delta CBX = \Delta FEY\left( {c.g.c} \right)\). Điều này kéo theo rằng \(\widehat {BXC} = \widehat {EYF}\)(đpcm).
|