Giải bài 5 trang 93 sách bài tập toán 9 - Chân trời sáng tạo tập 1

Cho đường tròn (O) đường kính AB và một dây cung AP. Tia AP cắt tiếp tuyến tại B của đường tròn (O) tại T. Chứng minh rằng: a) (widehat {AOP} = 2widehat {ATB}) b) (widehat {APO} = widehat {PBT})

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Cho đường tròn (O) đường kính AB và một dây cung AP. Tia AP cắt tiếp tuyến tại B của đường tròn (O) tại T. Chứng minh rằng:

a) \(\widehat {AOP} = 2\widehat {ATB}\)

b) \(\widehat {APO} = \widehat {PBT}\)

Phương pháp giải - Xem chi tiết

Dựa vào góc nội tiếp bằng nửa góc ở tâm cùng chắn một cung.

Lời giải chi tiết

a) Ta có \(\widehat {ATB} = \widehat {{B_1}}\) (cùng phụ với \(\widehat {{B_2}}\)).

\(\widehat {{B_1}} = \frac{1}{2}\widehat {AOP}\) (góc nội tiếp và góc ở tâm cùng chắn cung \(\overset\frown{AP}\)) nên \(\widehat {ATB} = \frac{1}{2}\widehat {AOP}\) hay \(\widehat {AOP} = 2\widehat {ATB}\).

b) AO = PO nên tam giác AOP cân tại O suy ra \(\widehat {PAO} = \widehat {APO}\).

\(\widehat {PAO} = \widehat {PBT}\) (cùng phụ với \(\widehat {{B_1}})\), suy ra \(\widehat {APO} = \widehat {PBT}\).

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close