Giải bài 6 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau: Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)). Bước 2: Làm tương tự bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^2}}}\)) Cứ tiếp tục quá trình như vậy (ở bước thứ n, bỏ đi \({3^{n - 1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1 GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Từ một tam giác đều có diện tích bằng 1, ta thực hiện lần lượt các bước như sau: Bước 1: Nối trung điểm các cạnh của tam giác đã cho, chia tam giác này thành 4 tam giác nhỏ và bỏ đi tam giác ở giữa (bỏ đi 1 tam giác có diện tích \(\frac{1}{4}\)). Bước 2: Làm tương tự bước 1 với mỗi tam giác trong 3 tam giác còn lại (bỏ đi 3 tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^2}}}\)) Cứ tiếp tục quá trình như vậy (ở bước thứ n, bỏ đi \({3^{n - 1}}\) tam giác, mỗi tam giác có diện tích \(\frac{1}{{{4^n}}}\)). Tính tổng diện tích các tam giác đã bỏ đi. Phương pháp giải - Xem chi tiết Sử dụng kiến thức về tổng của cấp số nhân lùi vô hạn để tính: Cấp số nhân vô hạn \(\left( {{u_n}} \right)\) có công bội q thỏa mãn \(\left| q \right| < 1\) được gọi là cấp số nhân lùi vô hạn. Cấp số nhân lùi vô hạn này có tổng là: \(S = {u_1} + {u_2} + ... + {u_n} + ... = \frac{{{u_1}}}{{1 - q}}\) Lời giải chi tiết Tổng diện tích các tam giác đã bỏ đi là: \(S = \frac{1}{4} + 3.{\left( {\frac{1}{4}} \right)^2} + {3^2}.{\left( {\frac{1}{4}} \right)^3} + ... + {3^n}{\left( {\frac{1}{4}} \right)^{n + 1}} + ... = \frac{1}{4} + \frac{1}{4}.\frac{3}{4} + \frac{1}{4}.{\left( {\frac{3}{4}} \right)^2} + ... + \frac{1}{4}.{\left( {\frac{3}{4}} \right)^n} + ...\) Tổng trên là tổng của các số hạng lập thành một cấp số nhân lùi vô hạn với số hạng đầu \({u_1} = \frac{1}{4}\), công bội \(q = \frac{3}{4}\). Do đó, \(S = \frac{1}{4}.\frac{1}{{1 - \frac{3}{4}}} = 1\).
|