Giải bài 71 trang 106 SBT toán 10 - Cánh diều

Cho \(\alpha \) thoả mãn \(\sin \alpha = \frac{3}{5}\). Tính cos\(\alpha \), tan\(\alpha \), cot\(\alpha \), sin(90° - \(\alpha \)), cos(90° - \(\alpha \)), sin(180° – \(\alpha \)),

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Cho \(\alpha \) thoả mãn \(\sin \alpha  = \frac{3}{5}\). Tính cos\(\alpha \), tan\(\alpha \), cot\(\alpha \), sin(90° - \(\alpha \)), cos(90° - \(\alpha \)), sin(180° – \(\alpha \)),

cos(180° – \(\alpha \)) trong các trường hợp sau:

a) 0° < \(\alpha \) < 90°

b) 90° < \(\alpha \) < 180°

Phương pháp giải - Xem chi tiết

Bước 1: Xét dấu các giá trị lượng giác của góc \(\alpha \) trong từng trường hợp

Bước 2: Sử dụng các công thức lượng giác cơ bản và giá trị lượng giác của các góc phụ nhau, bù nhau để tính các giá trị tương ứng

Lời giải chi tiết

a) Theo giả thiết, 0° < \(\alpha \) < 90° \( \Rightarrow \cos \alpha  > 0,\tan \alpha  > 0,\cot \alpha  > 0\)

+ Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\) \( \Rightarrow \cos \alpha  = \frac{4}{5}\)

+ \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{3}{4};\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{4}{3}\)

+ \(\sin ({90^0} - \alpha ) = \cos \alpha  = \frac{4}{5};\cos ({90^0} - \alpha ) = \sin \alpha  = \frac{3}{5}\)

+ \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha  = \frac{3}{5};\cos \left( {{{180}^0} - \alpha } \right) =  - \cos \alpha  =  - \frac{4}{5}\)

b) Theo giả thiết, 90° < \(\alpha \) < 180° \( \Rightarrow \cos \alpha  < 0,\tan \alpha  < 0,\cot \alpha  < 0\)

+ Ta có: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{3}{5}} \right)^2} = \frac{{16}}{{25}}\) \( \Rightarrow \cos \alpha  =  - \frac{4}{5}\)

+ \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} =  - \frac{3}{4};\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }} =  - \frac{4}{3}\)

+ \(\sin ({90^0} - \alpha ) = \cos \alpha  =  - \frac{4}{5};\cos ({90^0} - \alpha ) = \sin \alpha  = \frac{3}{5}\)

+ \(\sin \left( {{{180}^0} - \alpha } \right) = \sin \alpha  = \frac{3}{5};\cos \left( {{{180}^0} - \alpha } \right) =  - \cos \alpha  = \frac{4}{5}\)

 

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close