Giải bài 8 trang 24 sách bài tập toán 12 - Chân trời sáng tạoChọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Chọn đáp án đúng. Diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = {e^x} - 2\), trục hoành và hai đường thẳng \(x = 0,x = \ln 4\) là A. 1. B. 3. C. \(2\ln 2 - 1\). D. \(3 - 4\ln 2\). Phương pháp giải - Xem chi tiết ‒ Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \). Lời giải chi tiết \(S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} \) \({e^x} - 2 = 0 \Leftrightarrow x = \ln 2\) \(\begin{array}{l}S = \int\limits_0^{\ln 4} {\left| {{e^x} - 2} \right|dx} = \int\limits_0^{\ln 2} {\left| {{e^x} - 2} \right|dx} + \int\limits_{\ln 2}^{\ln 4} {\left| {{e^x} - 2} \right|dx} = \left| {\int\limits_0^{\ln 2} {\left( {{e^x} - 2} \right)dx} } \right| + \left| {\int\limits_{\ln 2}^{\ln 4} {\left( {{e^x} - 2} \right)dx} } \right|\\ = \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_0^{\ln 2}} \right| + \left| {\left. {\left( {{e^x} - 2x} \right)} \right|_{\ln 2}^{\ln 4}} \right| = \left( {2\ln 2 - 1} \right) + \left( {2 - 2\ln 2} \right) = 1\end{array}\) Chọn A.
|