Giải bài 8 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo

Từ 15 bút chì màu có màu khác nhau đôi một,

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Từ 15 bút chì màu có màu khác nhau đôi một,

a) Có bao nhiêu cách chọn ra một số bút chì màu, tính cả trường trường hợp hợp không chọn cái nào?

b) Có bao nhiêu cách chọn ra ít nhất 8 bút chì màu?

Lời giải chi tiết

a)

Số cách chọn ra 0 bút chì màu là: \(1 = C_{15}^0\) (Không chọn cái nào là 1 cách)

Số cách chọn ra 1 bút chì màu là: \(C_{15}^1\)

Số cách chọn ra k bút chì màu là: \(C_{15}^k\)

\( \Rightarrow \)Tổng số cách chọn ra một số bút chì màu là: \(C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15}\)

Theo công thức nhị thức Newton, ta có:

\({\left( {1 + x} \right)^{15}} = C_{15}^0 + C_{15}^1x + C_{15}^2{x^2} + ... + C_{15}^{15}{x^{15}}\)

Thay \(x = 1\) ta được \(C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15} = {2^{15}} = 32768\)

Vậy có 32768 cách chọn ra một số bút chì màu, tính cả trường hợp không chọn cái nào.

b) Số cách chọn ra k bút chì màu là: \(C_{15}^k\)

\( \Rightarrow \)Tổng số cách chọn ra ít nhất 8 bút chì màu là: \(C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15}\)

Mà \(C_{15}^k = C_{15}^{15 - k},0 \le k \le 15\)

\(\begin{array}{l} \Rightarrow C_{15}^8 + C_{15}^9 + C_{15}^{10} + ... + C_{15}^{15} = C_{15}^7 + C_{15}^6 + C_{15}^5 + ... + C_{15}^0\\\frac{1}{2}\left( {C_{15}^0 + C_{15}^1 + C_{15}^2 + ... + C_{15}^{15}} \right) = \frac{1}{2}{.2^{15}} = 16384\end{array}\)

Vậy có 16384 cách chọn ra ít nhất 8 bút chì màu.

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!

close