Giải bài 9.20 trang 68 sách bài tập toán 10 - Kết nối tri thức với cuộc sốngGieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là: GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Gieo đồng thời hai con xúc xắc cân đối. Xác suất để số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2 là: A. \(\frac{5}{{22}}\). B. \(\frac{1}{5}\). C. \(\frac{2}{9}\). D.\(\frac{7}{{34}}\). Phương pháp giải - Xem chi tiết Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\). Lời giải chi tiết Ta có \(n\left( \Omega \right) = 36\). Gọi A là biến cố “số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 2”. Khi đó \(A = \left\{ {\left( {1;3} \right),\left( {3;1} \right),\left( {2;4} \right),\left( {4;2} \right),\left( {3;5} \right),\left( {5;3} \right),\left( {4;6} \right),\left( {6;4} \right)} \right\}\). Suy ra \(n\left( A \right) = 8\). Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{8}{{36}} = \frac{2}{9}\) Chọn C
|