Giải bài tập 1 trang 40 SGK Toán 9 tập 1 - Cánh diều

Kiểm tra xem số nào là nghiệm của mỗi bất phương trình tương ứng sau đây. a. ({x^2} - 3x + 2 > 0) với (x = - 3;x = 1,5). b. (2 - 2x < 3x + 1) với (x = frac{2}{5};x = frac{1}{5}).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Kiểm tra xem số nào là nghiệm của mỗi bất phương trình tương ứng sau đây.

a. \({x^2} - 3x + 2 > 0\) với \(x =  - 3;x = 1,5\).

b. \(2 - 2x < 3x + 1\) với \(x = \frac{2}{5};x = \frac{1}{5}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Thay từng giá trị vào bất phương trình để kiểm tra.

Lời giải chi tiết

a. Thay \(x =  - 3\), ta có: \({\left( { - 3} \right)^2} - 3.\left( { - 3} \right) + 2 > 0\) là khẳng định đúng.

Vậy \(x =  - 3\) là nghiệm của bất phương trình \({x^2} - 3x + 2 > 0\).

Thay \(x = 1,5\), ta có: \(1,{5^2} - 3.1,5 + 2 > 0\) là khẳng định sai.

Vậy \(x = 1,5\) không là nghiệm của bất phương trình \({x^2} - 3x + 2 > 0\).

b. Thay \(x = \frac{2}{5}\), ta có: \(2 - 2.\frac{2}{5} < 3.\frac{2}{5} + 1\) là khẳng định đúng.

Vậy \(x = \frac{2}{5}\)  là nghiệm của bất phương trình \(2 - 2x < 3x + 1\).

Thay \(x = \frac{1}{5}\), ta có: \(2 - 2.\frac{1}{5} < 3.\frac{1}{5} + 1\) là khẳng định sai.

Vậy \(x = \frac{1}{5}\) không là nghiệm của bất phương trình \(2 - 2x < 3x + 1\). 

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close