Giải bài tập 4.29 trang 36 SGK Toán 12 tập 2 - Cùng khám pháTính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường sau quanh trục hoành: \(y = \sqrt x - 2\), \(y = 0\), \(x = 4\), \(x = 9\). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Tính thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường sau quanh trục hoành: \(y = \sqrt x - 2\), \(y = 0\), \(x = 4\), \(x = 9\). Phương pháp giải - Xem chi tiết Thể tích của một khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi \(y = f(x)\) quanh trục hoành trên đoạn \([a,b]\) được tính bằng công thức: \(V = \pi \int_a^b {{{\left[ {f(x)} \right]}^2}dx} \). Lời giải chi tiết Thể tích \(V\) được tính bằng: \({\rm{V = }}\pi \int_4^9 {{{\left( {\sqrt x - 2} \right)}^2}} dx = \pi \int_4^9 {(x - 4\sqrt x + 4)} {\mkern 1mu} dx\) Tính nguyên hàm: \(\int x {\mkern 1mu} dx = \frac{{{x^2}}}{2},\quad \int 4 \sqrt x {\mkern 1mu} dx = \frac{{8{x^{3/2}}}}{3},\quad \int 4 {\mkern 1mu} dx = 4x\) Thay vào: \(V = \pi \left[ {\frac{{{x^2}}}{2} - \frac{{8{x^{3/2}}}}{3} + 4x} \right]_4^9 = \pi \left( {\frac{{27}}{6} - \frac{{16}}{6}} \right) = \pi \left( {\frac{{11}}{6}} \right)\) Vậy thể tích khối tròn xoay là: \(V = \frac{{11\pi }}{6}\).
|