Giải bài tập 7 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo

Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng (widehat {MSD} = 2widehat {MBA}).

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo

Đề bài

Cho đường tròn (O) có hai đường kính AB, CD vuông góc với nhau. Lấy một điểm M trên cung nhỏ AC rồi vẽ tiếp tuyến với đường tròn (O) tại M. Tiếp tuyến này cắt đường thẳng CD tại S. Chứng minh rằng \(\widehat {MSD} = 2\widehat {MBA}\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Đọc kĩ dữ liệu đề bài để vẽ hình.

Chứng minh \(\widehat {MSD} = \widehat {MOA}\) và \(\widehat {MOA} = 2\widehat {MBA}\) suy ra \(\widehat {MSD} = 2\widehat {MBA}\)

Lời giải chi tiết

Ta có SM \( \bot \) OM (Tính chất tiếp tuyến)

Suy ra tam giác OSM vuông tại M

Ta có \(\widehat {MSO} + \widehat {MOS} = {90^o}\)

Và  AB\( \bot \)CD (gt)

Suy ra \(\widehat {MOS} + \widehat {MOA} = {90^o}\)

Nên \(\widehat {MSO} = \widehat {MOA}\) hay \(\widehat {MSD} = \widehat {MOA}\) (1)

Ta có \(\widehat {MOA} = 2\widehat {MBA}\) (góc ở tâm cùng chắn cung AM) (2)

Từ (1) và (2) suy ra \(\widehat {MSD} = 2\widehat {MBA}\).

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close