Giải câu hỏi mở đầu trang 14 SGK Toán 12 tập 1 - Chân trời sáng tạoSự phân huỷ của rác thải hữu cơ có trong nước sẽ làm tiêu hao oxygen hoà tan trong nước. Nồng độ oxygen (mg/l) trong một hồ nước sau t giờ (t \( \ge \) 0) khi một lượng rác thải hữu cơ bị xả vào hồ được xấp xỉ bởi hàm số (có đồ thị như đường màu đỏ ở hình bên). GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Sự phân huỷ của rác thải hữu cơ có trong nước sẽ làm tiêu hao oxygen hoà tan trong nước. Nồng độ oxygen (mg/l) trong một hồ nước sau t giờ (t \( \ge \) 0) khi một lượng rác thải hữu cơ bị xả vào hồ được xấp xỉ bởi hàm số (có đồ thị như đường màu đỏ ở hình bên): \(y(t) = 5 - \frac{{15t}}{{9{t^2} + 1}}\) Vào các thời điểm nào nồng độ oxygen trong nước cao nhất và thấp nhất? (Theo: https://www.researchgate.net/publication/264903978_Microrespirometric_ characterization _of_activated_sludge_inhibition_by_copper_and_zinc)
Phương pháp giải - Xem chi tiết Sử dụng đạo hàm và lập bảng biến thiên. Lời giải chi tiết Xét \(y(t) = 5 - \frac{{15t}}{{9{t^2} + 1}}\) trên nửa đoạn \([0; + \infty )\). \(y'(t) = \frac{{135{t^2} - 15}}{{{{(9{t^2} + 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{1}{3}\\x = - \frac{1}{3}(loai)\end{array} \right.\) Bảng biến thiên: Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[0; + \infty )} y(t) = y(\frac{1}{3}) = - \frac{5}{2}\) và \(\mathop {\max }\limits_{[0; + \infty )} y(t) = y(0) = 5\). Vậy vào các thời điểm t = 0 thì nồng độ oxygen trong nước cao nhất và t = \(\frac{1}{3}\) giờ thì nồng độ oxygen trong nước thấp nhất.
|