Giải mục 1 trang 60 Chuyên đề học tập Toán 10 - Cánh diềuQuan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó. GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn Quảng cáo
Đề bài Quan sát Hình 22a, Hình 22b, Hình 22c và nêu tỉ số khoảng cách từ một điểm M nằm trên mỗi đường conic đến tiêu điểm của nó và khoảng cách từ điểm M đến đường chuẩn tương ứng với tiêu điểm đó. Lời giải chi tiết + Với mọi điểm M thuộc elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = e\left( {0 < e < 1} \right)\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F + Với mọi điểm M thuộc hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > 0,b > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = e\left( {e > 1} \right)\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F + Với mọi điểm M thuộc parabol (P): \({y^2} = 2px\left( {p > 0} \right)\), ta luôn có \(\frac{{MF}}{{d\left( {M,\Delta } \right)}} = 1\), trong đó F là một trong hai tiêu điểm \({F_1},{F_2}\) và \(\Delta \) là đường chuẩn ứng tiêu điểm F
|