Giải mục 1 trang 61, 62, 63 SGK Toán 9 tập 2 - Cánh diều

Xét phương trình (a{x^2} + bx + c = 0(a ne 0)). Giả sử phương trình đó có 2 nghiệm là ({x_1},{x_2}.) Tính ({x_1} + {x_2};{x_1}.{x_2}) theo các hệ số (a,b,c.)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

HĐ1

Video hướng dẫn giải

Trả lời câu hỏi Hoạt động 1 trang 61 SGK Toán 9 Cánh diều

Xét phương trình \(a{x^2} + bx + c = 0(a \ne 0)\). Giả sử phương trình đó có 2 nghiệm là \({x_1},{x_2}.\) Tính \({x_1} + {x_2};{x_1}.{x_2}\) theo các hệ số \(a,b,c.\)

Phương pháp giải:

Áp dụng công thức tính nghiệm để tính 2 nghiệm sau đó tìm tổng và tích 2 nghiệm đó.

Lời giải chi tiết:

Phương trình có 2 nghiệm: \({x_1} = \frac{{ - {b^2} + \sqrt \Delta  }}{{2a}}\); \({x_2} = \frac{{ - {b^2} - \sqrt \Delta  }}{{2a}}\).

\(\begin{array}{l}{x_1} + {x_2} = \frac{{ - b + \sqrt \Delta  }}{{2a}} + \frac{{ - b - \sqrt \Delta  }}{{2a}} = \frac{{ - 2b}}{{2a}} = \frac{{ - b}}{a}\\{x_1}.{x_2} = \frac{{ - b + \sqrt \Delta  }}{{2a}}.\frac{{ - b - \sqrt \Delta  }}{{2a}} = \frac{{{b^2} - \Delta }}{{4{a^2}}} = \frac{{{b^2} - ({b^2} - 4ac)}}{{4{a^2}}} = \frac{{4ac}}{{4{a^2}}} = \frac{c}{a}\end{array}\)

LT1

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 1 trang 62 SGK Toán 9 Cánh diều

Cho phương trình \( - 4{x^2} + 9x + 1 = 0\).

a)   Chứng minh phương trình có 2 nghiệm phân biệt \({x_1},{x_2}.\)

b)  Tính \({x_1} + {x_2};{x_1}.{x_2}\).

c)   Tính \({x_1}^2 + {x_2}^2\).

Phương pháp giải:

a)   Chứng minh \(\Delta  > 0\).

b)  Áp dụng công thức tính nghiệm để tính 2 nghiệm sau đó tìm tổng và tích 2 nghiệm đó.

c)   Biến đổi \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2}\), sau đó thay các giá trị phù hợp ở câu b vào biểu thức vừa biến đổi.

Lời giải chi tiết:

a)   Phương trình có các hệ số: \(a =  - 4;b = 9;c = 1\)

\(\Delta  = {9^2} - 4.\left( { - 4} \right).1 = 97 > 0\)

Vì \(\Delta  > 0\)nên phương trình đã cho có 2 nghiệm phân biệt (đpcm).

b)  Áp dụng Định lý Viète, ta có:

\(\begin{array}{l}{x_1} + {x_2} = \frac{{ - b}}{a} = \frac{{ - 9}}{{ - 4}} = \frac{9}{4}\\{x_1}.{x_2} = \frac{c}{a} = \frac{1}{{ - 4}} = \frac{{ - 1}}{4}\end{array}\)

c)   Ta có: \({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2}\) (1)

Thay \({x_1} + {x_2} = \frac{9}{4},{x_1}.{x_2} = \frac{{ - 1}}{4}\) vào (1) ta được:

\({x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}.{x_2} = {\left( {\frac{9}{4}} \right)^2} - 2.\left( {\frac{{ - 1}}{4}} \right) = \frac{{89}}{16}\)

LT2

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 2 trang 63 SGK Toán 9 Cánh diều

Không tính \(\Delta\), giải phương trình \(4{x^2} - 7x + 3 = 0\).

Phương pháp giải:

Kiểm tra xem có phải trường hợp nhẩm được nghiệm hay không (\(a + b + c = 0\) hoặc \(a - b + c = 0\)).

Lời giải chi tiết:

Phương trình có các hệ số \(a = 4;b =  - 7;c = 3\).

Ta thấy: \(a + b + c = 4 - 7 + 3 = 0\) nên phương trình có nghiệm: \({x_1} = 1,{x_2} = \frac{3}{4}\)

LT3

Video hướng dẫn giải

Trả lời câu hỏi Luyện tập 3 trang 63 SGK Toán 9 Cánh diều

Không tính \(\Delta\), giải phương trình \(2{x^2} - 9x - 11 = 0\).

Phương pháp giải:

Kiểm tra xem có phải trường hợp nhẩm được nghiệm hay không (\(a + b + c = 0\) hoặc \(a - b + c = 0\)).

Lời giải chi tiết:

Phương trình có các hệ số \(a = 2;b =  - 9;c =  - 11.\)

Ta thấy \(a - b + c = 2 - ( - 9) - 11 = 0\) nên phương trình có nghiệm là \({x_1} =  - 1,{x_2} = \frac{{ - ( - 11)}}{2} = \frac{{11}}{2}.\)

  • Giải mục 2 trang 63, 64 SGK Toán 9 tập 2 - Cánh diều

    Cho hai số có tổng bằng 5 và tích bằng 6. a) Gọi một số là x. Tính số còn lại theo x. b) Lập phương trình bậc hai ẩn x.

  • Giải bài tập 1 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Nếu ({x_1},{x_2})là hai nghiệm của phương trình (a{x^2} + bx + c = 0(a ne 0)) thì: a) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) b) ({x_1} + {x_2} = frac{c}{a};{x_1}.{x_2} = - frac{b}{a}) c) ({x_1} + {x_2} = frac{b}{a};{x_1}.{x_2} = - frac{c}{a}) d) ({x_1} + {x_2} = - frac{b}{a};{x_1}.{x_2} = frac{c}{a})

  • Giải bài tập 2 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai? a) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a + b + c = 0) thì phương trình có một nghiệm là ({x_1} = 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) b) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có một nghiệm là ({x_1} = - 1) và nghiệm còn lại là ({x_2} = frac{c}{a}.) c) Nếu phương trình (a{x^2} + bx + c = 0(a ne 0)) có (a - b + c = 0) thì phương trình có

  • Giải bài tập 3 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Giải thích vì sao nếu (ac < 0) thì phương trình (a{x^2} + bx + c = 0(a ne 0)) có 2 nghiệm là 2 số trái dấu nhau.

  • Giải bài tập 4 trang 64 SGK Toán 9 tập 2 - Cánh diều

    Cho phương trình (2{x^2} - 3x - 6 = 0). a) Chứng minh phương trình có 2 nghiệm phân biệt ({x_1},{x_2}.) b) Tính ({x_1} + {x_2};{x_1}.{x_2}). Chứng minh cả 2 nghiệm ({x_1},{x_2}) đều khác 0. c) Tính (frac{1}{{{x_1}}} + frac{1}{{{x_2}}}) d) Tính ({x_1}^2 + {x_2}^2) e) Tính (left| {{x_1} - {x_2}} right|.)

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí

close