Phần câu hỏi bài 4 trang 56, 57 Vở bài tập toán 8 tập 1

Giải phần câu hỏi bài 4 trang 56, 57 VBT toán 8 tập 1. Khi quy đồng mẫu thức hai phân thức 1/(4x^3y)...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Quảng cáo
Lựa chọn câu để xem lời giải nhanh hơn

Câu 13.

Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4{x^3}y}}\)  và \(\dfrac{2}{{6{x^2}{y^2}}}\)  ta được mẫu thức chung là biểu thức :

\(\begin{array}{l}(A)\,\,10\left( {{x^3}y + {x^2}{y^2}} \right)\\(B)\,\,10{x^2}y\\(C)\,\,12{x^3}{y^2}\\(D)\,\,6{x^3}y\end{array}\) 

Phương pháp giải:

- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.

- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:

+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).

+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}4{x^3}y = {2^2}{x^3}y\\6{x^2}{y^2} = 2.3{x^2}{y^2}\\MTC = {2^2}.3.{x^3}{y^2} = 12{x^3}{y^2}\end{array}\)

Chọn C. 

Câu 14.

Khi quy đồng mẫu thức \(\dfrac{1}{{4{x^2}y + 4{x^2}z}}\)  và \(\dfrac{3}{{10x{{\left( {y + z} \right)}^2}}}\)  ta được mẫu thức chung là biểu thức

\(\begin{array}{l}(A)\,\,14\left( {{x^3}{y^2} + {x^3}{z^2}} \right)\\(B)\,\,20{x^2}{\left( {y + z} \right)^2}\\(C)\,\,2x\left( {x + y} \right)\\(D)\,\,20{x^2}\left( {{y^2} + {z^2}} \right)\end{array}\) 

Phương pháp giải:

- Phân tích mẫu thức của các phân thức đã cho thành nhân tử.

- Mẫu thức chung cần tìm là một tích mà các nhân tử được chọn như sau:

+ Nhân tử bằng số của mẫu thức chung là tích các nhân tử bằng số ở các mẫu thức của các phân thức đã học. (Nếu các nhân tử bằng số ở các mẫu thức là những số nguyên dương thì nhân tử bằng số của mẫu thức chung là BCNN của chúng).

+ Với mỗi cơ số của luỹ thừa có mặt trong các mẫu thức ta chọn luỹ thừa với số mũ cao nhất.

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}+)\,4{x^2}y + 4{x^2}z = 4{x^2}\left( {y + z} \right) \\= {2^2}.{x^2}\left( {y + z} \right)\\+)\,10x{\left( {y + z} \right)^2} = 2.5.x{\left( {y + z} \right)^2}\\ \Rightarrow MTC = {2^2}.5.{x^2}.{\left( {y + z} \right)^2}\\= 20{x^2}{\left( {y + z} \right)^2}\end{array}\)

Chọn B.

Câu 15.

Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{4x}}\)  và \(\dfrac{2}{{6y}}\)  ta được những phân thức

\((A)\,\,\dfrac{1}{{4x + 6y}}\)  và \(\dfrac{2}{{4x + 6y}}\)

\((B)\,\,\dfrac{{6y}}{{4x + 6y}}\)  và \(\dfrac{{8x}}{{4x + 6y}}\)

\((C)\,\,\dfrac{y}{{12xy}}\)  và \(\dfrac{{2x}}{{12xy}}\)

\((D)\,\,\dfrac{{3y}}{{12xy}}\)  và \(\dfrac{{4x}}{{12xy}}\) 

Phương pháp giải:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng. 

Lời giải chi tiết:

Ta có:

 \(\begin{array}{l}4x = {2^2}.x\\6y = 2.3.y\\ \Rightarrow MTC = {2^2}.3.x.y = 12xy\end{array}\)

Nhân tử phụ của mẫu thức thứ nhất là \(3y\)

Nhân tử phụ của mẫu thức thứ hai là \(2x\)

Quy đồng mẫu thức ta được: 

\(\begin{array}{l}\dfrac{1}{{4x}} = \dfrac{{1.3y}}{{4x.3y}} = \dfrac{{3y}}{{12xy}}\\\dfrac{2}{{6y}} = \dfrac{{2.2x}}{{6y.2x}} = \dfrac{{4x}}{{12xy}}\end{array}\)

Chọn D.

Câu 16.

Khi quy đồng mẫu thức hai phân thức \(\dfrac{1}{{12{x^3}\left( {x + y} \right)}}\)  và \(\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}}\)

Ta được những phân thức

\((A)\,\,\dfrac{1}{{21\left( {x + y} \right)\left( {2x + y} \right)}}\)  và \(\dfrac{2}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)

\((B)\,\,\dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)  và \(\dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)

\((C)\,\,\dfrac{{1 + 9\left( {x + y} \right)}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)  và \(\dfrac{{2 + 4x}}{{21{x^2}\left( {x + y} \right)\left( {2x + y} \right)}}\)

\((D)\,\,\dfrac{{1 + 3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\)  và \(\dfrac{{2 + 4x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\) 

Phương pháp giải:

Muốn quy đồng mẫu thức nhiều phân thức ta có thể làm như sau:

- Phân tích các mẫu thức thành nhân tử rồi tìm mẫu thức chung.

- Tìm nhân tử phụ của mỗi mẫu thức.

- Nhân tử và mẫu của mỗi phân thức với nhân tử phụ tương ứng. 

Lời giải chi tiết:

Ta có: 

\(\begin{array}{l}12{x^3}\left( {x + y} \right) = {2^2}.3.{x^3}\left( {x + y} \right)\\9{x^2}{\left( {x + y} \right)^2} = {3^2}.{x^2}{\left( {x + y} \right)^2}\\ \Rightarrow MTC = {2^2}{.3^2}.{x^3}.{\left( {x + y} \right)^2} \\= 36{x^3}{\left( {x + y} \right)^2}\end{array}\)

- Nhân tử phụ của mẫu thức thứ nhất là: \(3\left( {x + y} \right)\)

- Nhân tử phụ của mẫu thức thứ hai là: \(4x\)

\(\begin{array}{l}\dfrac{1}{{12{x^3}\left( {x + y} \right)}} = \dfrac{{3\left( {x + y} \right)}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\\\dfrac{2}{{9{x^2}{{\left( {x + y} \right)}^2}}} = \dfrac{{2.4x}}{{9{x^2}{{\left( {x + y} \right)}^2}.4x}} \\= \dfrac{{8x}}{{36{x^3}{{\left( {x + y} \right)}^2}}}\end{array}\)

Chọn B.

Loigiaihay.com

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close